WELDREAM

PRODUC

NIPPON STEEL

PRODUCT CATALOG

NIPPON STEEL WELDING & ENGINEERING CO., LTD.

NIPPON STEEL WELDING & ENGINEERING CO., LTD.

Mild Steel·490~550MPa High Tensile Strength Steel	1
570~950MPa High Tensile Strength Steel	2
Low Temperature Service Steel	3
Heat Resisting Steel	4
Boiler Tube/Pipe	5
Atmospheric Corrosion Resisting Steel	6
Sulphuric Acid Corrosion Resisting Steel	7
Sea Water Corrosion Resisting Steel	8
Stainless Steel	g
Special Alloy	10
Surfacing Cast Iron	11
Electroslag Welding Materials	12
Electrogas Welding Materials	13
High Efficiency Welding Process	14
Welding Machine and Equipment	15
Approval List of Welding Materials	16

NIPPON STEEL

PRODUCT CATALOG

NIPPON STEEL WELDING & ENGINEERING CO., LTD.

- Please note the following points in the use of this catalog.
 - 1. Classification numbers either by JIS (Japanese Industrial Standards) or AWS (American Welding Society) are given to the products except for some types which are classified into neither of them.

There are three different ways in which the classification numbers are given depending on the extent that the products meet the classifications.

(1) The classification number without an mark;

(i.e. JIS Z 3211 E4319)

It means that the product meets the classification requirements and that JIS Mark is usable on the product based on the JIS mark system.

(2) The classification number with the mark "☆"; (i.e. *JIS Z 3214 E49J03·NCCAU, *AWS 5.1 E7016)

It means that the product meets the classification requirements but that the JIS Mark system and AWS are not authentication to the classification.

(3) The classification number with the mark " \bigstar ";

(i.e. * AWS A5.1 E7016)

It means that the product meets most of the classification requirements. However, there is for example a partial deviation in chemical composition.

- 2. The symbols of welding consumables are determined as following from the initial letter of the welding process.
 - (1) FCAW: Flux Cored Arc Welding (flux cored wires)
 - (2) SMAW: Shielded Metal Arc Welding (covered arc welding electrodes)
 - (3) SAW: Submerged Arc Welding (fluxes, wires, cut wires and backing materials)

(4) GMAW: Gas Metal Arc Welding (solid wires)

(5) GTAW: Gas Tungsten Arc Welding (rods and solid wires)

(6) ESW: Electroslag Welding (solid wires and fluxes)

(7) EGW: Electrogas Welding (flux core wires and backing materials)

- 3. The definition of the "Weld Metal" described in this catalog is a weld metal which has not been diluted by base metal except in the case of SAW.
- 4. Besides the products listed in this catalog, we will make every effort to manufacture welding consumables and/or machinery tailored to customers' requirements.
- 5. The status of our ship approvals may change from time to time. Your kind confirmation for up-to-date information will be appreciated.
- 6. The specifications of the products included in this catalog are subject to change without prior notice.

INDEX 1) Mild Steel·490~550MPa High Tensile Strength Steel

		Specific	ation	-
Welding method	Brand Name	JIS	AWS	Page
	SF-1	Z 3313 T49J0T1-1CA-UH5	☆A5.36 E71T1-C1A0- CS1	20
	SF-1E	Z 3313 T492T1-1CA-UH5	☆A5.36 E71T1-C1A2- CS1	21
	FC-1	Z 3313 T49J0T1-1CA-U	☆A5.36 E71T1-C1A0- CS1	22
	SF-3M	_	☆A5.36 E71T1-C1A4- CS1	23
	SF-3	Z 3313 T492T1-1CA-N1-UH5	☆A5.36 E71T12-C1A2- CS2	24
	SF-1A	Z 3313 T49J0T1-1MA-UH5	☆A5.36 E71T1-M21A2- CS1	25
	SF-3A	Z 3313 T492T1-1MA-UH5	☆A5.36 E71T1-M21A4- CS1	26
Flux Cored Arc Welding Wires	SM-1	Z 3313 T49J0T15-0CA-G-UH5	☆A5.36 E70T15-C1A0- CS1	27
	SM-1F	Z 3313 T49J0T1-0CA-UH5	☆A5.36 E70T1-C1A0- CS1	28
	FCM-1F	Z 3313 T49J0T1-0CA-U	☆A5.36 E70T1-C1A0- CS1	29
	SM-3A	_	☆A5.36 E71T15- M21A4-CS1	30
	SF-3E	_	☆A5.36 E81T1-C1A4- CS1	31
	SX-26	Z 3313 T49J0T15-0CA-UH5	☆A5.36 E70T15-C1A0- CS1	32
	SX-55	Z 3313 T550T15-0CA-UH5		33
	SM-1S	Z 3313 T49J0T1-0CA-UH5	☆A5.36 E70T1-C1A0-G	34
	SM-1A	Z 3313 T49J0T15-0MA-UH5	☆A5.36 E70T15- M21A2-CS1	34
	S-03	Z 3211 E4303	☆A5.1 E6013	46
	NS-03Hi	Z 3211 E4303-U	☆A5.1 E6013	46
	S-03Z	Z 3211 E4303-U	☆A5.1 E6013	46
	FT-51	Z 3211 E4313	☆A5.1 E6013	36
	L-43LH	Z 3211 E4316	_	48
	S-16W	Z 3211 E4316	☆A5.1 E7016	37
	NITTETSU-16W	Z 3211 E4316	A5.5 E7016-G	38
	NITTETSU-56		A5.1 E7016	39
	S-16	Z 3211 E4316-U	☆A5.1 E7016	48
	A-200	Z 3211 E4319	☆A5.1 E6019	46
Covered	G-300	Z 3211 E4319	☆A5.1 E6019	46
Arc Welding	G-200	Z 3211 E4319-U	☆A5.1 E6019	46
Electrodes	S-16V	Z 3211 E4340-U	☆A5.1 E7048	48
	S-16LH	Z 3211 E4916	☆A5.1 E7016	48
	EX-55	Z 3211 E4916-U	☆A5.1 E7016	50
	L-55	Z 3211 E4916-U	☆A5.1 E7016	40
	L-55LH	Z 3211 E4916-U	☆A5.1 E7016	41
	7018	Z 3211 E4916	☆A5.1 E7018	42
	EX-50F	Z 3211 E4940-G	☆A5.1 E7024	50
	M-50G	Z 3211 E4940-G	★A5.1 E7024	50
	TW-50	Z 3211 E4948	☆A5.1 E7048	43
	L-53		☆A5.1 E7048	1
		Z 3211 E5716-U		44
	LM-55G		☆A5.1 E7028	50

W.11	D IN	Specif	ication	-Pa	
Welding method	Brand Name	JIS	AWS	Pa	
	NF-45×Y-B	☆Z 3183 S422-S	☆A5.17 F6A2-EM12		
	YF-15×Y-D	☆Z 3183 S50J2-H	☆A5.17 F7A4-EH14、 F7P4-EH14		
	NF-45×Y-D	☆Z 3183 S501-H	☆A5.17 F7A0-EH14		
	YF-800×Y-D	☆Z 3183 S501-H	☆A5.17 F7A0-EH14		
	YF-800S×Y-D	☆Z 3183 S501-H	☆A5.17 F7A0-EH14		
	NF-60×Y-DS	☆Z 3183 S501-H	☆A5.17 F7A0-EH14		
	NF-80×Y-DS	☆Z 3183 S501-H	☆A5.17 F7A2-EH14、 F6P2-EH14		
	YF-15A×Y-D	☆Z 3183 S50J2-H	☆A5.17 F7A4-EH14		
	NF-1×Y-D	☆Z 3183 S532-H	☆A5.17 F7A4-EH14、 F7P2-EH14		
Submerged	NF-1×Y-DM3	☆Z 3183 S58J2-H	☆A5.23 F8A4-EG-G、 F8P2-EG-G		
Arc Welding	NF-11H×Y-D	☆Z 3183 S502-H	☆A5.17 F7A4-EH14		
Materials	NF-11H×Y-DM3	_	☆A5.23 F7A6-EG-G		
	NF-11H×Y-E		☆A5.23 F8A4-EG-G		
	YF-15B×Y-DM3	☆Z 3183 S532-H	☆A5.23 F7A4-EG-G、 F7P4-EG-G		
	NF-100×Y-DS	☆Z 3183 S532-H	☆A5.17 F7A6-EH14、 F7P6-EH14		
	YF-15×Y-CM	☆Z 3183 S50J2-H	☆A5.23 F8A2-EG-A3、 F7P2-EG-A3		
	YF-38×Y-D	☆Z 3183 S502-H	☆A5.17 F7A0-EH14		
	NF-80×Y-CMS	☆Z 3183 S502-H	☆A5.23 F7A2-EA4-A2、 F7P2-EA4-A2		
	NSH-53Z×Y-DL	☆Z 3183 S532-H	_		
	NF-1×Y-E	☆Z 3183 S532-H	★A5.23 F8A4-EG-G、 ☆F8P2-EG-G		
	YM-26	Z 3312 YGW11	☆A5.18 ER70S-G	T	
	YM-28	Z 3312 YGW12	☆A5.18 ER70S-G		
	YM-28S	Z 3312 YGW15	☆A5.18 ER70S-G		
	YM-SCM	Z 3312 G49A0C16	☆A5.18 ER70S-3		
das Metal Arc	YM-25	Z 3312 YGW16	☆A5.18 ER70S-3		
Velding Wires	YM-25S	Z 3312 YGW16	☆A5.18 ER70S-3		
	YM-24S	Z 3312 G43A2M0	-		
	YM-24T	Z 3312 YGW16	-		
	YM-22Z		-		
	YM-28Z	Z 3312 G49A0C0			
Gas Tungsten Arc Welding Wires	YT-28	☆Z 3316 W49AP2U12	☆A5.18 ER70S-6		

2) 570~950MPa High Tensile Strength Steel

		Specific	ation	
Welding method	Brand Name	JIS	AWS	Pag
	SF-60	Z 3313 T59J1T1-1CA- N2M1-UH5	☆A5.36 E81T1- C1A2-K11	74
	SF-60A	Z 3313 T59J1T1-1MA- N2M1-UH5	☆A5.36 E81T1- M21A2-K11	7
Flux Cored Arc Welding Wires	SF-70A	_	☆A5.36 E101T1- M21A4-K2-H4	7
	SF-80AM	_	☆AWS A5.36 E111T1- M21A2-K3-H4	7
	SM-80A	_	☆AWS A5.36 E110T15- M21A4-G-H4	7
	L-60	Z 3211 E5916-N1M1U	☆A5.5 E8016-G	7
	L-60W	Z 3211 E5916-N1M1	☆A5.5 E8016-G	7
	L-60S	Z 3211 E5716-G	☆A5.5 E8016-G	8
	L-62CF	Z 3211 E6216-N1M1	☆A5.5 E9016-G	8
Covered	L-60LT	Z 3211 E6216-G	☆A5.5 E9016-G	8
Arc Welding	L-62	Z 3211 E6216-G	☆A5.5 E9016-G	8
Electrodes	L-74S	Z 3211 E6916-G	☆A5.5 E10016-G	8
	L-80	Z 3211 E7816-N5CM3U	☆A5.5 E11016-G	8
	L-80SN	Z 3211 E7816-N9M3U	☆A5.5 E11016-G	8
	L-80EL	Z 3211 E7816-N5CM3U	☆A5.5 E11016-G	8
	L-100EL	☆WES410-DK9016	_	8
	NF-820×Y-DM	☆Z 3183 S582-H	☆A5.23 F8A0-EA3-A3	8
	NB-60L×Y-DM3	_	☆A5.23 F8A8-EG-G、 F8P8-EG-G	8
G 1	YF-15B×Y-DM	☆Z 3183 S624-H4	☆A5.23 F9A6-EA3-A3、 F8P2-EA3-A3	8
Submerged Arc Welding Materials	NF-250×Y-204B	_	☆A5.23 F9A6-EG-G、 F8P6-EG-G	9
Materiais	NB-250H×Y-204B	_	☆A5.23 F9A8-EG-G、 F9P8-EG-G	8
	NB-250H×Y-80M	☆Z 3183 S804-H4	☆A5.23 F11A10-EG-M3	9
	NB-250J×Y-80J	☆Z 3183 S804-H4	☆A5.23 F11A10-EG-G	9
	NB-80×Y-80	☆Z 3183 S80J4-H4	☆A5.23 F12A4-EG-G	9
	YM-60C	Z 3312 G59JA1UC3M1T	☆A5.28 ER80S-G	9
	YM-60A	Z 3312 G59JA1UM3M1T	☆A5.28 ER80S-G	6
Gas Metal Arc	YM-70CS	Z 3312 G69A2UCN1M2T	☆A5.28 ER100S-G	10
Welding Wires	YM-70C	Z 3312 G69A2UCN4M3T	☆A5.28 ER100S-G	10
welding wires	YM-70A	Z 3312 G69A3UMN4M3T	☆A5.28 ER100S-G	10
	YM-80C	Z 3312 G78A2UCN5M3T	☆A5.28 ER110S-G	9
	YM-80A	-	☆A5.28 ER110S-G	9
	YT-60	☆Z 3316 W59AP2U34M3	☆A5.28 ER80S-G	10
Gas Tungsten Arc Welding	YT-70	☆Z 3316 W69AP2UN4M3T	☆A5.28 ER100S-G	10
Wires	YT-80A	☆Z 3316 W78AP2UN5C1M3T	☆A5.28 ER110S-G	10

3) Low Temperature Service Steel

Welding method	Brand Name	Specific	ation	Pag
weiding method	Brand Ivanie	JIS	AWS	1 ag
	SF-36F	Z 3313 T496T1-0CA-N1-H5	☆AWS A5.36 E70T9- C1A8-K6	106
	SF-36E	Z 3313 T496T1-1CA-N3-H5	☆A5.36 E81T9-C1A8- K2-H4	10
	SF-3AM	_	☆A5.36 E81T9-M21A8- Ni1-H4	10
Flux Cored Arc Welding Wires	SF-3AMSR	_	☆A5.36 E71T9-M21A6-K6、 E71T9-M21P6-K6	10
	SF-47E		☆A5.36 E81T9-C1A8- Ni1-H4	11
	SF-50E	_	☆A5.36 E91T9-C1A8- Ni2-H4	11
	SF-50A	_	☆A5.36 E91T9-M21A4- K2-H4	11
	L-55SN	_	☆A5.5 E7016-G	11
	N-12M	_	☆AWS A5.5 E8016-C1	11
Covered	N-13NM	Z 3211 E4916-N7PUL	☆A5.5 E7016-C2L	11
Covered Arc Welding	N-5F	Z 3311 E4928-GAP	—	11
Electrodes	N-11	Z 3311 E5516-3N3APL	☆A5.5 E8016-G	11
Liectroues	N-12	Z 3311 E5516-N5APL	☆A5.5 E8016-C1	11
	N-13	Z 3311 E5516-N7L	☆A5.5 E8016-C2	11
	N-16	Z 3311 E5516-N13APL	☆A5.5 E8016-G	11
	NB-55×Y-DS	_	☆A5.17 F7A8-EH14、 F7P8-EH14	11
	NB-55E×Y-D	_	☆A5.17 F7A8-EH14	11
	NB-55LS×Y-3NI	_	☆A5.23 F7A10-EG-Ni3	12
	NB-55L×Y-D	_	☆A5.23 F7A8-EG-G、 F7P8-EG-G	12
	NB-55E×Y-DM3	_	☆A5.23 F8A4-EG-G	12
Submerged	NB-60L×Y-DM3	_	☆A5.23 F8A8-EG-G、 F8P8-EG-G	12
Arc Welding	NSH-60×Y-D	☆Z 3183 S582-H	☆A5.23 F8A4-EH14-G	12
Materials	NF-310×Y-E	_	☆A5.23 F8A8-EG-G、 F8P4-EG-G	12
	NF-310×Y-DM3		☆A5.23 F8A8-EG-G、 F8P4-EG-G	12
	NB-55E×Y-CM	_	_	12
	NB-55×Y-CMS		☆A5.23 F8A8-EA4-A4 F8P8-EA4-A4	12
	NB-55×Y-DM	_	☆A5.23 F9A8-EA3-G F9P8-EA3-G	12
	YM-28E	Z 3312 G49AP3UM12	☆A5.18 ER70S-G	12
	YM-36E	Z 3312 G49AP6M17	☆A5.18 ER70S-G	12
Gas Metal Arc	YM-55H	Z 3312 G55AP4C0	★A5.28 ER80S-G	12
Welding Wires	YM-1N	Z 3312 G57AP6MN2M1T	☆A5.28 ER80S-G	12
	YM-3N	Z 3312 G49AP6UMN7	☆A5.28 ER80S-G	12
	YM-69F	☆Z 3312 G78A6UG0	☆A5.28ER110S-G	12
Gas Tungsten Arc Welding Wires	YT-28E	☆Z 3316 W49AP4U12	☆A5.18 ER70S-G	13

4) Heat Resisting Steel

W. 11	Brand Name	Specific	ation	D
Welding method	Brand Name	JIS	AWS	Page
	N-0S	_	☆A5.5 E7016-A1	132
	N-1S	_	☆A5.5 E8016-B2	133
	CM-1A	_	☆A5.5 E8016-B2	133
Covered	N-2S	_	☆A5.5 E9016-B3	134
Arc Welding	N-2SM	_	☆A5.5 E9016-B3	136
Electrodes	CM-2A	_	☆A5.5 E9016-B3	134
	N-3	_	☆A5.5 E9016-G	136
	N-P31	_	☆A5.5 E9016-G	136
	N-P32	_	☆A5.5 E9016-G	136
	NF-250×Y-511	☆Z 3183 S642-1CM	☆A5.23 F8P2-EG-B2	138
	NB-250M×Y-521H	☆Z 3183 S642-2CM	☆A5.23 F9P2-EG-B3	139
Submerged	NB-2CM×Y-521	☆Z3183 S642-2CM	☆A5.23 F9P2-EB3-B3	140
Arc Welding	NF-250×Y-204	☆Z 3183 S642-MN	☆A5.23 F9P6-EG-G	141
Materials	NF-1×Y-DM	☆Z 3183 S642-H4	☆A5.23 F9A2-EA3-A3、 F9P0-EA3-A3	142
	NB-1CM×Y-511S	☆Z3183 S642-1CM	☆A5.23 F9P2-EB2-B2	142
	YM-505	☆Z 3317 G49C-3M3T	☆A5.28 ER80S-G	144
Gas Metal Arc	YM-511	☆Z 3317 G55C-1CMT1	☆A5.28 ER80S-G	145
Welding Wires	YM-511A	☆Z 3317 G55M-1CM3	☆A5.28 ER80S-G	145
weiding wires	YM-521	☆Z 3317 G62C-2C1M3	☆A5.28 ER90S-G	146
	YM-521A	☆Z 3317 G62M-2C1M2	☆A5.28 ER90S-G	146
Gas Tungsten	YT-505	☆Z 3317 W55-G	☆A5.28 ER80S-G	147
Arc Welding	YT-511	☆Z 3317 W55-1CM3	☆A5.28 ER80S-G	147
Wires	YT-521	☆Z 3317 W62-2C1M2	☆A5.28 ER90S-G	147

5) Boiler Tube/Pipe Steel

W. 11:	Brand Name	Specific	ation	D
Welding method	Brand Name	JIS	AWS	Page
	N-0S	_	☆A5.5 E7016-A1	150
Covered	N-1S	_	☆A5.5 E8016-B2	150
Arc Welding	N-2S	_	☆A5.5 E9016-B3	150
Electrodes	N-HCM2S	_	_	150
	N-HCM12A	_	_	150
	YT-HCM2S	☆Z 3317 W57-2CMWV-Ni	_	152
	YT-9ST	☆Z 3317 W62-9C1MV1	_	152
Gas Tungsten	YT-HCM12A	☆Z 3317 W69-10CMWV-Cu	_	152
Arc Welding	YT-304H	_	_	152
Wires	T-304H	_	_	152
	YT-HR3C	_	_	152
	T-HR3C	_	_	152

6) Atmospheric Corrosion Resisting Steel

377.1.1.	D. IN	Specific	ation	D
Welding method	Brand Name	JIS	AWS	Page
Flux Cored Arc	SF-50W	☆Z 3320 T49J0T1-1CA- NCC1-UH5	☆AWS A5.36 E71T1- C1A0-G	156
Welding Wires	SF-60W	☆Z 3320 T57J1T1-1CA- NCC1-UH5	☆AWS A5.36 E81T1- C1A0-W2	157
	CT-03Cr	☆Z 3214 E49J03-NCCAU	_	158
Coursed	CT-16Cr	☆Z 3214 E49J16-NCCAU	☆A5.5 E7016-G	158
Covered Arc Welding	CT-16VCr	_	☆A5.5 E7016-G	158
Electrodes	CT-26MCr	_	_	158
Licenoues	CT-60Cr	☆Z 3214 E57J16- NCC1AU	☆A5.5 E8016-G	158
	NF-820×Y-CNCW	☆Z 3183 S50J2-AW1	☆A5.23 F7A0-EG-G	160
Submerged	YF-15B×Y-CNCW	☆Z 3183 S50J2-AW1	☆A5.23 F7A4-EG-G	160
Arc Welding	NF-310×Y-CNCW	☆Z 3183 S50J2-AW1	☆A5.23 F7A4-EG-G	160
Materials	NF-820×Y-60W	☆Z 3183 S582-AW1	☆A5.23 F8A0-EG-G	160
	YF-15B×Y-60W	☆Z 3183 S58J2-AW1	☆A5.23 F8A2-EG-G	160
Gas Metal Arc Welding Wires	YM-55W	☆Z 3315 G49JA0UC1-NCCJ	☆A5.28 ER80S-G	162
	YM-60W	☆Z 3315 G57JA1UC1-NCCJ	☆A5.28 ER80S-G	162
weiung wires	FGC-55	☆Z 3315 G49J0UC1-CCJ	☆A5.28 EG80S-G	162

7) Sulphuric Acid Corrosion Resisting Steel

M7.11'	Brand Name	Specific	ation	D
Welding method	Brand Name	JIS	AWS	Page
Flux Cored Arc	SF-1ST	_	☆AWS A5.36 E81T1- C1AZ-G	166
Welding Wires	FC-23ST	_	_	167
	ST-16M	Z 3211 E4916-G	☆A5.1 E7016-G	168
Covered	ST-03Cr	Z 3211 E4903-G	_	170
Arc Welding	ST-16Cr	Z 3211 E5516-G	☆A5.5 E7016-G	170
Electrodes	ST-03CrA	Z 3211 E4903-G	_	170
	ST-16CrA	Z 3211 E4916-G	☆A5.5 E7016-G	170
Submerged Arc Welding Meterial	NB-1ST×Y-1ST	_	_	172
Gas Metal Arc Welding Wires	YM-W4	_	_	174
Gas Tungsten Arc	YT-1ST	_	_	176
Welding Wires	YT-W4	_	_	177

8) Sea Water Corrosion Resisting Steel

W. 11.	Brand Name	Specific	ation	D
Welding method	Brand Name	JIS	AWS	Page
Flux Cored Arc Welding Wires	SF-55RS	_	☆A5.36 E81T1-C1A0-G	180
Covered Arc Welding Electrodes	RS-55	Z 3211 E4916-G	☆A5.5 E8016-G	182
Gas Metal Arc	YM-W4	—	—	184
Welding Wires	YM-55RSA	_	_	184
Gas Tungsten Arc	YT-W4	_	_	186
Welding Wires	YT-55RS			186

9) Stainless Steel

Welding method	Brand Name	Specific	cation	-Pa
weiding method	Dranu Ivanie	JIS	AWS	1 2
	SF-308L	Z 3323 TS308L-FB0	☆A5.22 E308LT0-1	1
	SF-308	Z 3323 TS308-FB0	☆A5.22 E308T0-1	1
	SF-308LP	Z 3323 TS308L-FB1	☆A5.22 E308LT1-1	1
	SF-309L	Z 3323 TS309L-FB0	☆A5.22 E309LT0-1	1
	SF-309LP	Z 3323 TS309L-FB1	☆A5.22 E309LT1-1	1
	SF-309MoL	Z 3323 TS309LMo-FB0	☆A5.22 E309LMoT0-1	1
	SF-309MoLP	☆Z 3323 TS309LMo-FB1	☆A5.22 E309LMoT1-1	1
'lux Cored Arc	SF-N309L	Z 3323 TS309L-FN0	☆A5.22 E309LT0-3	1
Velding Wires	SF-316L	Z 3323 TS316L-FB0	☆A5.22 E316LT0-1	1
	SF-316LP	Z 3323 TS316L-FB1	☆A5.22 E316LT1·1	1
	SF-317L	Z 3323 TS317L-FB0	☆A5.22 E317LT0-1	1
	SF-2120	_	_	1
	SF-DP8	Z3323 TS2209-FB0	☆A5.22 E2209T0-1	1
	SF-DP3	Z 3323 TS329J4L-FB0	_	1
	SF-DP3W	_	☆A5.22 E2594T0-1	1
	FCM-430NL	_	_	1
	S-308·R	Z 3221 ES308-16	☆A5.4 E308-16	1
	S-308L·R	Z 3221 ES308L-16	☆A5.4 E308L-16	1
	S-309·R	Z 3221 ES309-16	☆A5.4 E309-16	2
	S-309L·R	Z 3221 ES309L-16	☆A5.4 E309L-16	2
	S-309M·R	Z 3221 ES309Mo-16	☆A5.4 E309Mo-16	2
	S-309ML·R	Z 3221 ES309LMo-16	☆A5.4 E309LMo-16	2
	S-310·R	☆Z 3221 ES310-16	☆A5.4 E310-16	2
	S-316·R	Z 3221 ES316-16	☆A5.4 E316-16	2
	S-316L·R	Z 3221 ES316L-16	☆A5.4 E316L-16	2
	S-316LN·R	_	_	2
Covered	S-316CL·R	☆Z 3221 ES316LCu-16	_	2
Arc Welding Electrodes	S-317L·R	☆Z 3221 ES317L-16	☆A5.4 E317L-16	2
Liectrodes	S-347·R	Z 3221 ES347-16	☆A5.4 E347-16	2
	S-347L·R	☆Z 3221 ES347L-16	☆A5.4 E347L-16	2
	S-347AP·R	_	_	2
	S-170	_	_	2
	S-2120·R	_	_	2
	S-DP8	Z 3221 ES2209-16	☆A5.4 E2209-16	2
	S-DP3	Z 3221 ES329J4L-16	_	2
	S-DP3W	_	_	2
	S-410Nb	Z 3221 ES409Nb-16	☆A5.4 E409Nb-16	2
	S-430Nb	☆Z 3221 ES430Nb-16	★A5.4 E430-16	2
	Y-308×BF-300M	☆Z 3324 YWS308	☆A5.9 ER308	2
	Y-308L×BF-300M	☆Z 3324 YWS308L	☆A5.9 ER308L	2
	Y-304N×BF-308N2	_	_	2
	Y-309×BF-300M	☆Z 3324 YWS309	☆A5.9 ER309	2
	Y-309×BF-300F	☆Z 3324 YWS309	☆A5.9 ER309	2
	Y-316×BF-300M	☆Z 3324 YWS316	☆A5.9 ER316	2
ubmerged	Y-316×BF-300F	☆Z 3324 YWS316	☆A5.9 ER316	2
arc Welding	Y-316L×BF-300M	☆Z 3324 YWS316L	☆A5.9 ER316L	2
Materials	Y-316L×BF-300F	☆Z 3324 YWS316L	☆A5.9 ER316L	2
	Y-316L×BF-29T	_	☆A5.9 ER316L	2
	Y-347×BF-300M	☆Z 3324 YWS347	☆A5.9 ER347	2
	Y-170×BF-300M		_	2
	Y-DP8×BF-30	_	_	2
	Y-DP3×BF-30			2
	Y-410×BF-300M	☆Z 3324 YWS410	☆A5.9 ER410	14

Welding method	Brand Name	Spec	ification	—Pa
welding method	Brand Name	JIS	AWS	P:
	YM-308	☆Z 3321 YS308	☆A5.9 ER308	2
	YM-309	☆Z 3321 YS309	☆A5.9 ER309	2
	YM-316	☆Z 3321 YS316	☆A5.9 ER316	2
	YM-308L	☆Z 3321 YS308L	☆A5.9 ER308	2
	YM-308LSi	☆Z 3321 YS308LSi	☆A5.9 ER308LSi	2
	YM-308UL	☆Z 3321 YS308L	☆A5.9 ER308L	2
	YM-309L	☆Z 3321 YS309L	☆A5.9 ER309L	2
	YM-309LSi	☆Z 3321 YS309LSi	☆A5.9 ER309LSi	2
	YM-309Mo	☆Z 3321 YS309Mo	☆A5.9 ER309Mo	2
	YM-309MoL	☆Z 3321 YS309LMo	☆A5.9 ER309LMo	2
Gas Metal Arc	YM-310	☆Z 3321 YS310	☆A5.9 ER310	2
Welding Wires	YM-316L	☆Z 3321 YS316L	☆A5.9 ER316L	2
	YM-316LSi	☆Z 3321 YS316LSi	☆A5.9 ER316LSi	2
	YM-316UL	☆Z 3321 YS316L	☆A5.9 ER316L	2
	YM-317L	☆Z 3321 YS317L	☆A5.9 ER317L	2
	YM-347	☆Z 3321 YS347	☆A5.9 ER347	2
	YM-347L	☆Z 3321 YS347L	☆A5.9 ER347	2
	YM-190			2
	YM-410	☆Z 3321 YS410	☆A5.9 ER410	2
	YM-430L	☆Z 3321 YS430	☆A5.9 ER430	2
	YM-160	☆Z 3321 YS430LNb	MA0.5 ER450	2
	YT-308	☆Z 3321 YS308	☆A5.9 ER308	2
	YT-308L	☆Z 3321 YS308L	☆A5.9 ER308L	2
	YT-308UL	☆Z 3321 YS308L	☆A5.9 ER308L	2
	YT-309	☆Z 3321 YS309	☆A5.9 ER309	2
		☆Z 3321 18509		2
	YT-309L YT-309Mo		☆A5.9 ER309L ☆A5.9 ER309Mo	17
		☆Z 3321 YS309Mo		2
	YT-309MoL	☆Z 3321 YS309LMo	☆A5.9 ER309LMo	2
	YT-310	☆Z 3321 YS310	☆A5.9 ER310	2
	YT-316	☆Z 3321 YS316	☆A5.9 ER316	2
	YT-316L	☆Z 3321 YS316L	☆A5.9 ER316L	2
Gas Tungsten	YT-316UL	☆Z 3321 YS316L	☆A5.9 ER316L	2
Arc Welding	YT-317L	☆Z 3321 YS317L	☆A5.9 ER317L	2
Wires	YT-320	_	☆A5.9 ER320LR	2
	YT-347	☆Z 3321 YS347	☆A5.9 ER347	2
	YT-347AP		-	2
	YT-DP8	☆Z 3321 YS2209	☆A5.9 ER2209	2
	YT-DP3		-	2
	YT-DP3W	-	-	2
	YT-410	☆Z 3321 YS410	☆A5.9 ER410	2
	YT-430	☆Z 3321 YS430	☆A5.9 ER430	2
	YT-430L	☆Z 3321 YS430L	☆A5.9 ER430	2
	YT-190	-	-	2
	YT-444	_	_	2

10) Special Alloy

W 11	Brand Name	Specific	Specification		
Welding method	Brand Name	JIS	AWS	Page	
	YAWATA WELD B(M)	☆Z 3225 D9Ni-1	☆A5.11 ENiCrFe-4	230	
Covered	NITTETSU WELD 196	☆Z 3225 D9Ni-2	☆A5.11 ENiMo-9	231	
Arc Welding	YAWATA WELD B	☆Z 3224 E Ni 6133	☆A5.11 ENiCrFe-2	232	
Electrodes	YAWATA WELD 182	☆Z 3224 E Ni 6182	☆A5.11 ENiCrFe-3	232	
	NITTETSU WELD 112AC	☆Z 3224 E Ni 6625	☆A5.11 ENiCrMo ⁻ 3	232	
Submerged Arc Welding Materials	NITTETSU FLUX 10H× NITTETSU FILLER 196	☆Z 3333 FS9Ni-H YS9Ni	★A5.14 ERNiMo-9	234	
	YT-NIC	☆Z 3334 SNi2061	☆A5.14 ERNi-1	236	
	YAWATA FILLER 82	☆Z 3334 SNi6082	☆A5.14 ERNiCr-3	236	
	NITTETSU FILLER 196	☆Z 3332 YG-T9Ni-2	☆A5.14 ERNiMo-9	236	
Gas Tungsten	YT-NC718	☆Z 3334 SNi7718	☆A5.14 ERNiFeCr-2	236	
Arc Welding Wires	NITTETSU FILLER 625	☆Z 3334 SNi6625	☆A5.14 ERNiCrMo-3	236	
wires	YT-HSTC2	☆Z 3334 SNi6276	☆A5.14 ERNiCrMo-4	236	
	YT-NC622	☆Z 3334 SNi6622	☆A5.14 ERNiCrMo-10	236	
	YT-NC617	☆Z 3334 SNi 6617	☆A5.14 ERNiCrCoMo-1	236	

11) Surfacing Cast Iron

	D IN	Specification		
Welding method	Brand Name	JIS	AWS	Page
	H-250B	☆Z 3251 DF2A-250-R	_	240
	H-250C	☆Z 3251 DF2A-250-B	_	240
	H-300C	☆Z 3251 DF2A-300-B	_	240
	H-350C	☆Z 3251 DF2A-350-B	_	240
	H-500	☆Z 3251 DF2B-500-B	_	240
	H-600	☆Z 3251 DF2B-600-B	_	242
	H-700	☆Z 3251 DF2B-700-B	_	242
Covered Arc Welding Electrodes	H-750	☆Z 3251 DF3C-700-B	_	242
	H-800	☆Z 3251 DF3C-700-B	_	242
	H-13Cr	☆Z 3251 DF4B-350-B	_	242
	H-13M	☆Z 3251 DFMA-250-B	_	244
	H-13MN	☆Z 3251 DFMA-250-B	_	244
	H-13CrM	_	_	244
	H-MCr	☆Z 3251 DFME-250-B	_	244
	H-11Cr	☆Z 3251 DF4A-500-B	_	244
	H-30Cr	☆Z 3251 DFCrA-700-BR	_	246
	H-30CrM	☆Z 3251 DFCrA-700-BR	_	246
	C-1N	☆Z 3252 ECNi-CI	★A5.15 ENi-CI	248
	C-5N	☆Z 3252 ECNiFe-CI	☆A5.15 ENiFe-CI	248
Flux Cored Arc	FCM-132M	Z 3326 YF4A-G-400		250
	FCM-134	Z 3326 YF4A-G-400		250
Welding Wires	FCM-134M	Z 3326 YF4A-G-400		250

12) Electroslag Welding Materials

W. 11:	Brand Name	Specification		
Welding method	Brand Name	JIS	AWS	Page
Electroslag	YM-55S×YF-15I	☆Z 3353 YES501-S/FES-Z	—	252
Welding Materials	YM-60E×YF-15I	☆Z 3353 YES602-S/FES-Z		252

13) Electrogas Welding Materials

W 11	DUIN	Specification			
Welding method	Brand Name	JIS	AWS	Page	
Electrogas	EG-1	☆Z 3319 YFEG-21C	_	256	
Welding	EG-3	_	☆A5.26 EG72T G	256	
Materials	EG-60	☆Z 3319 YFEG-32C	_	256	

14) High Efficiency Welding Process

Welding method	Application	Page
SUBNAP WELDING PROCESS	High Quality and Low Cost Welding Process for Heavy Steel Plates	260
CUT WIRE SUBMERGED ARC WELDING PROCESS	High Efficiency Submerged Arc Welding Process	262
ONE-SIDE WELDING PROCESS	One-Side Welding Process to Shorten Welding Time Using Various Kind of Backing Materials and Fluxs	264
SB-41	 It is small and light and consequently is easily set up by sticking adhesive face of aluminium foil to steel plate. It can be used by cutting to the desired length and bending up or down since solid fluxes are tile-like and flexible. It can be used for uranami (sound penetration bead) welding with a wide range of welding conditions since solid fluxes have high fire resistance. Inventory control is easy since it rarely absorb moisture and, therefore, redrying is not necessary. 	266
SOFT BACKING SUBMERGED ARC WELDING PROCESS	One-side welding where backing jigs cannot be used like welding of curved plates in shipbuilding and site welding of bridges.	268
FLUX COPPER BACKING SUBMERGED ARC WELDING PROCESS	Welding of large plates for ships, bridges and structures.	270

15) Welding Machine and Equipment

Machine and Equipment	Brand Name	Application	Page
Simplified Travelling Carriage with Various Models	_	Fillet Welding	274
CARRYBOY Series(Simplified traveling carriage)	CARRYBOY ACE	Horizontal Fillet Welding	276
CARRYBOY Series(Simplified traveling carriage)	NS Carry Auto III	Horizontal Fillet Welding	277
CARRYBOY Series(Simplified traveling carriage)	CARRYBOY K	Flat and horizontal Fillet Welding	278
Versatile Arc Welding Equipment	SY-mini	All position Welding	280
Portable Type Arc Welding Robot	NAVI-21	All position Welding	281
SESNET Welder	SESNET-W II	Vertical Butt Joint on Electroslag Welding	282
Electrogas Welding Machine	VEGA-A	Vertical Butt welding	284
High Heat Input Submerged Arc Welding Equipment	_	Welding of Box column corner joints	288
Diaphragm Welding Equipment	_	Welding of Box column diaphragms	289
PANEL LINE PRODUCTION FACILITY	_	Production line of parallel block used in shipbuilding.	290

Machine and Equipment	Brand Name	Application	Page
Multi-electrode Automatic Welding Equipment	_	Horizontal Fillet Welding of longitudinals and stiffeners	293
One-Side SAW Welding Equipment	_	Joining of large steel plates	294
High Speed FCuB Welding Equipment	NH-HISAW	Joining of large steel plates	295
FULL DIGITAL PLASMA WELDING MACHINE	NW-150AH-III NW-350AH-III	Welding of various metals	296
TWO ELECTRODES PLASMA ARC WELDING MACHINE	_	W-PLASMA Welding Welding of various metals	298
PLASMA WELDING MACHINE FOR GALVANIZED STEEL SHEET	_	DS PLASMA Welding Galvanized steel sheet	299
PLASMA TRANSFERRED ARC (PTA) WELDING Equipment	_	Surfacing welding	300
Circumferential Fillet Welding Equipment	_	Welding of automotive parts, etc	301
Pipe Overlap Fillet Welding Equipment	_	Welding of electromagnetic valves, sensor parts, etc	302
Flat Plate Butt Welding Equipment	_	Butt welding of flat plates	303
Simplified Plasma Seam Welding System	_	Seam Welding of flat plates and pipes	304
Pipe Welding Equipment	_	Seam Welding of various pipes	305
Clamp Seam Welding System (6.2m type)	_	Welding of box corner sections	306

16) Approval List of Welding Materials

Category	Page	
1. Covered Arc Welding Materials -SMAW-		
2. Gas Shielded Arc Welding Materials		
1) Gas Metal Arc Welding Wires Wires -GMAW-	312	
2) Flux Cored Arc Welding Wires -FCAW-	314	
3) Gas Tungsten Arc Welding Rods and Wires -GTAW-	318	
4) Electrogas Arc Welding Materials -EGW-	318	
5) One-Side Gas Shielded Arc Welding Materials		
3. Submerged Arc Welding Materials -SAW-		
1) Multi-layer Welding and Both Side Welding	322	
2) One-Side Submerge Arc Welding Materials	324	

Warning for Safety in Welding

	• Be sure to follow the safety practices stated in the following in order to protect welders, operators and accompanied workers from a serious accident resulting in injury or death.
--	--

·Be sure to follow the safety practices stated in the following when you use welding consumables.

•Be sure to follow the safety practices stated in the instruction manual when you use welding equipment.

 $\cdot\,\text{Do}$ not touch live electrical parts. (A covered electrode held with an electrode holder and a wire in welding are electrically live.)

 \cdot Wear dry, insulated gloves. Do not wear teared and wet gloves.

Use an electric shock prevenling device (open-circuil-voltage-reducing device) when welders or operalors work in confined or high-level paces. Use also a lileline when a welder or operator conducts welding at a highlevel spaces.

• Follow the safety practice stated in the instruction manual of the welding machine before you use. Do not use a welding machine case or cover of which is removed. welding cables must be of a size adequale for the capacity expected. Welding cables must be maintained, and a damaged cable must be repaired or replaced new.

Fumes and gases generated in welding. can be dangerous to your health.
Welding in conlined spaces can be danger-

ous to suffocation because of oxygen deficient atmospheres.

•Keep your head out of the source of fumes or gases to prevent you from directly breathing high density fumes or gases.

- \cdot Use local exhaust ventilation, or wear respirators in order to prevent you from breathing fumes and toxic gases
- •Use general ventilation for welding in the workshop. Particularly in welding in confined spaces, be sure to use adequate ventilation, or wear respirators in the presence of a trained supervisor.
- •Do not weld where operations of degreasing, cleaning, spraying, and painting are present nearby. Welding work close to these operations may cause a generation of harmful gases.
- \cdot Use adequate ventilation or respirators with special attention in welding plated and coated steel.
- \cdot Use respirators, eye safety glasses and safety leather gloves when handling welding fluxes in order to prevent you from the flux dust.

• Arc rays can injure eyes and burn skin.

•Wear hand shields with an adequate grade of shade in welding and in supervising the welding work. Select the correct grade of shade for filter lenses and filter plates suitable for exact welding work by referring to the standard of JIS T8141.

- •Wear protectors suitable for preventing you from the arc rays such as safety leather gloves for welding, long sleeve shirts, foot covers, leather aprons, etc.
- · Use, at need, shade curtains for welding by surrounding the welding areas in order to prevent accompanied workers from the arc rays.

· Fire and explosion can take place.

- •Never weld at areas adjacent to highly inflammable materials. Remove combustibles so that spatter cannot ignite them. If combustibles cannot be removed, cover them with a noninflammable material.
- $\cdot \operatorname{Do}$ not weld a vessel or pipe which contains combustibles or being sealed.
- $\cdot \operatorname{Do}$ not put a hot weldment close to combustibles right after welding finished.
- $\cdot \mbox{When}$ welding cellings, floors, walls, etc. remove combustibles at the other side of them.
- •Any part of welding wire, with exception of wire extended at the tip of the torch, must be free from touching on the electrical circuit of the base metal side.

Fasten the cable joints and seal them in a insulation tape. The cable for the base metal side should be connected closer to the part of welding.
Be ready to cope with a possible accident by equipping fire-extingushing equipment adjacent to the welding areas.

- · Flying spatters and slags can injure eyes and cause skin burns.
- ·High temperature heat in welding can cause skin burns.

Wear safety glasses, safety leather gloves for welding, long sleeve shirts, foot covers, leather aprons, etc.
Do not touch weldments while hot.

•The tips of the welding wires and filler wires can injure eyes, faces, etc.

- $\cdot \operatorname{Do}$ not loose your hold on the tip of the wire when take off the tip of the wire.
- Do not direct the welding torch to your face when check the wire feeding condition.

- •Falling down and dropping welding consumables can injure you.
- •Wear safety shoes, and pay your attention not to drop welding consumables on your body when you carry and handle them. Keep your posture correct not to cause a crick in your back while handling them.
- •Follow the handling instructions shown on the surface of the pail pack wire packages when handle them.
- Pile up welding consumables so that falling down and dropping cannot take palce while being stored and carried.

Mild Steel·490~550MPa High Tensile Strength Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires FCAW

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, chemical engineering apparatus, rolling stock and cans.

CHARACTERISTICS

SF-1 is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and bead is smooth with good shape and appearance since easily removable slag covers bead evenly. The diffusible hydrogen content is as low as that of solid wires since the wire has no seam and, consequently, weld metal shows excellent crack resistance. Welding fume is also less. It assures high welding efficiency since deposition rate is high and all-position welding is easily performed with almost the same current.

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. Distance between base metal and tip should be kept within 20~30mm.
- 4. Arc voltage should be 1 or 2 volt lower than that for conventional flux cored wires and 4 or 5 volt lower than that for solid wires.
- 5. SB-41, backing material, is recommended for one side welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	C	Si	Mn	Р	S
CO_2	0.06	0.50	1.40	0.015	0.010

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
520	580	28	91

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter	r (mm)	1.0	1.2	1.4	1.6
	F	$150 \sim 260$	180~320	200~410	$220 \sim 450$
	H-Fil	$150 \sim 260$	180~320	200~410	$220 \sim 450$
Current	Н	$150 \sim 240$	180~300	$200 \sim 350$	220~400
А	V-up	$150 \sim 200$	$180 \sim 260$	200~280	200~280
	V-down	$160 \sim 220$	200~280	220~300	—
	OH	150~240	180~260	200~280	_

0 20

Approval: NK, ABS, LR, DNV, BV, GL, CR, KR, CCS, RS

SF-1E

JIS Z 3313 T492T1-1CA-UH5 *AWS A5.36 E71T1-C1A2-CS1

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, rolling stock and parts which especially requires toughness.

CHARACTERISTICS

NITTESU SF-1E is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas.

It assures excellent usability with minimized spattering and beautiful bead appearance with satisfactory impact toughness in all position welding.

GUIDELINES FOR USAGE

- 1. If gas shild is insufficient, nitrogen in the air will be absorbed into weld metal causing deterioration of toughness. Distance between nozzle and base metal should be kept within 20mm.
- 2. Select optimum welding conditions, heat input for example, in accordance with plate thickness, welding position, etc.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni
CO_2	0.06	0.50	1.29	0.014	0.005	0.30

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J
590	610	28	93

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter	r (mm)	1.2	1.4
Current A	F	180~300	200~410
	H-Fil	180~300	200~410
	Н	180~300	200~350
	V-up	180~260	200~280
	OH	180~300	200~300

Approval: ABS, LR, DNV, PRS

FCAW

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, chemical engineering apparatus, rolling stock and cans.

CHARACTERISTICS

FC-1 is a rutile type flux cored arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and bead is smooth with good shape and appearance since easily removable slag covers bead evenly. Welding fume is also less. It assures high welding efficiency since deposition rate is high and all-position welding is easily performed with almost the same current.

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
- 2. A suitable shield gas flow rate is $20\sim 25\ell/min$.
- 3. Distance between base metal and tip should be kept within 20~30mm.
- 4. SB-41 series, backing material, is recommended for one side welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.04	0.53	1.45	0.016	0.008

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
510	570	27	100

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.0	1.2	1.4	1.6	2.0
	F	$90 \sim 250$	$120 \sim 300$	$150 \sim 400$	$200 \sim 450$	$300 \sim 500$
	H-Fil	$90 \sim 250$	120~300	$150 \sim 350$	200~400	300~450
Current	Н	90~230	$120 \sim 280$	$150 \sim 320$	$180 \sim 350$	—
А	V-up	90~230	$120 \sim 260$	$150 \sim 270$	$180 \sim 280$	—
	V-down	$120 \sim 250$	$160 \sim 300$	220~300	$250 \sim 300$	
	OH	90~230	120~260	$150 \sim 270$	180~280	

Approval: NK, ABS, LR, DNV, BV, GL, CR

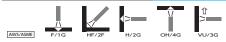
SF-3M

*AWS A5.36 E71T1-C1A4-CS1

For Carbon Steel

APPLICATIONS

All position welding down to -40°C, 100%CO2 shielding gas


CHARACTERISTICS

SF-3M is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas and designed for shipbuilding and offshore structure welding. Weld metal shows excellent toughness in low temperature range down to -40°C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni
0.05	0.42	1.30	0.013	0.004	0.44

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -40°C, J
545	595	28	115

TYPICAL WELD JOINT TEST

Base metal	Plate thickness mm	Welding position	Heat input kJ/cm	Yield strength MPa	Tensile strength MPa	Charpy 2V-notch at -40°C, J	CTOD mm,at –10°C
YS360	50	Vertical-up	22	590	655	110	0.72

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
Current A	F, H	180~300	200~400
	H-Fil	180~300	200~400
	V-up, OH	180~260	200~280

FCAW

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, rolling stock and parts which especially requires toughness.

CHARACTERISTICS

SF-3 is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas and designed for welding shipbuilding grade E steel. Weld metal shows excellent toughness in low temperature range of $-20 \sim -30^{\circ}C$. Crack resistance and weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. If gas shield is insufficient, nitrogen in the air will be absorbed into weld metal causing deterioration of toughness. Distance between nozzle and base metal should be kept within 20mm.
- 2. Select optimum welding conditions, heat input for example, in accordance with plate thickness, welding position, etc.
- 3. SB-41, backing material, is recommended for one side welding.
- 4. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni
CO_2	0.05	0.42	1.30	0.013	0.004	0.44

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J		
MPa	MFa		−30°C	−20°C	
545	600	27	105	130	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
	F	180~300	200~410
C I	H-Fil	180~300	200~410
Current A	Н	180~300	200~350
A	V-up	180~260	200~280
	OH	180~260	200~280

Approval: NK, ABS, LR, DNV, BV, CR, CCS, RS

SF-1A

JIS Z 3313 T49J0T1-1MA-UH5 *AWS A5.36 E71T1-M21A2-CS1

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, chemical engineering apparatus, rolling stock and cans.

CHARACTERISTICS

SF-1A is a rutile type seamless flux cored arc welding wire to be used with $Ar+CO_2$ shield gas. Arc is stable, spatters are few and bead is smooth with good shape and appearance since easily removable slag covers bead evenly. The diffusible hydrogen content is as low as that of solid wires since the wire has no seam and, consequently, weld metal shows excellent crack resistance. Welding fume is also less. It assures high welding efficiency since deposition rate is high and all-position welding is easily performed with almost the same current.

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. Distance between base metal and tip should be kept within 20~30mm.
- 4. Arc voltage should be 1 or 2 volt lower than that for conventional flux cored wires and 4 or 5 volt lower than that for solid wires.
- 5. SB-41, backing material, is recommended for one side welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
Ar+20% CO_2	0.05	0.52	1.22	0.013	0.008

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J
530	575	25	60

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (1	nm)	1.2	1.4	1.6
	F	180~320	200~430	$220 \sim 450$
Comment	H-Fil	180~320	200~430	$220 \sim 450$
Current A	Н	180~300	200~350	220~400
A	V-up	180~260	200~280	200~280
	OH	180~300	200~300	—

Approval: NK, ABS, LR, DNV, BV, GL, PRS

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

FCAW

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, rolling stock and parts which especially requires toughness.

CHARACTERISTICS

SF-3A is a rutile type seamless flux cored arc welding wire to be used with $Ar+CO_2$ shield gas and designed for welding shipbuilding grade E steel. Weld metal shows excellent toughness in low temperature range of $-20 \sim$ -30°C. Crack resistance and weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. If gas shield is insufficient, nitrogen in the air will be absorbed into weld metal causing deterioration of toughness. Distance between nozzle and base metal should be kept within 20mm.
- 2. Select optimum welding conditions, heat input for example, in accordance with plate thickness, welding position, etc.
- 3. SB-41, backing material, is recommended for one side welding.
- 4. For others, see GUIDELINES FOR USAGE 1~4 of SF-1 (Page 3-2).

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni
Ar+20% CO ₂	0.05	0.46	1.48	0.014	0.005	0.33

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J -40°C
600	620	25	87

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
	F	180~300	200~410
a 1	H-Fil	180~300	200~410
Current	Н	180~300	200~350
A	V-up	180~260	200~280
	OH	180~300	200~300

Approval: NK, ABS, LR, DNV, GL, RS

SM-1

JIS Z 3313 T49J0T15-0CA-G-UH5 *AWS A5.36 E70T15-C1A0-CS1

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, bridges, ships and rolling stock.

CHARACTERISTICS

SM-1 is seamless flux cored arc welding wire filled mainly with metallic powder and is used with CO_2 shield gas. Arc is softer and fume is less than CO_2 solid wires and high welding speed is obtainable. Continuous multi-layer welding like solid wires is possible due to the small amount of slag. The wire is fed straight and easily since it has no seam and, therefore, is suitable for high current and high efficiency automatic welding including robots.

GUIDELINES FOR USAGE

- 1. A high capacity welding power source of more than 600A is required for big diameter wire (2.0mm).
- 2. Recommended distance between tip and base metal is 20~30mm for 1.6mm diameter and 25~35mm for 2.0mm diameter.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.05	0.72	1.28	0.015	0.006

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
460	560	30	70

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4	1.6	2.0
Current (A)	F	200~320	220~450	$250 \sim 550$	350~650
	H-Fil	200~320	220~400	$250 \sim 450$	$350 \sim 500$

Approval: NK, ABS, LR

SM-1F

JIS Z 3313 T49J0T1-0CA-UH5 *AWS A5.36 E70T1-C1A0-CS1

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

FCAW

Flat and horizontal welding of mild steel and 490MPa high tensile strength steel for ships, bridges and steel frames.

CHARACTERISTICS

SM-1F is a rutile type seamless flux cored arc welding wire filled mainly with metallic powder to be used with CO2 shield gas. Weld metal shows excellent resistance to pitting in the welding of steel plates coated with inorganic zinc primer.

GUIDELINES FOR USAGE

- 1. Suitable torch angle for horizontal fillet welding is $40 \sim 50^{\circ}$ from bottom plate and forehand angle is 5~30°.
- 2. Care should be given to the primer thickness.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1 (Page 3-2).

WELDING POSITION

FCM-1F

JIS Z 3313 T49J0T1-0CA-U *AWS A5.36 E70T1-C1A0-CS1

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Flat and horizontal welding of mild steel and 490MPa high tensile strength steel for ships, bridges and steel frames.

CHARACTERISTICS

FCM-1F is a rutile type flux cored arc welding wire filled mainly with metallic powder to be used with CO₂ shield gas. Weld metal shows excellent resistance to pitting in the welding of steel plates coated with inorganic zinc primer. Bead shape of fillet welding is also good.

GUIDELINES FOR USAGE

- 1. Suitable torch angle for horizontal fillet welding is $40 \sim 50^{\circ}$ from bottom plate and forehand angle is 5~30°.
- 2. Care should be given to the primer thickness.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1 (Page 3-2).

WELDING POSITION

	/\

TYPICAL C	CHEMICAL	COMPOSITION	OF WELD	MFTAL	1 %

Shield Gas	С	Si	Mn	Р	S
CO_2	0.05	0.53	1.50	0.016	0.011

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point,	Yield Point, Tensile Strength, MPa MPa		Charpy 2V-notch, J		
MFa	wir a	%	−20°C	0°C	
510	585	26	62	85	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4	1.6	
Current	F	$180 \sim 320$	200~400	$220 \sim 450$	
Α	H-Fil	180~320	200~350	$220 \sim 450$	

Approval: NK, ABS, LR, DNV, BV, CR, GL, CCS, RS

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.04	0.55	1.50	0.015	0.010

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
510	570	27	90

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2 1.4		1.6	
Current	F-Fil	180~320	200~400	220~450	
А	H-Fil	180~320	$200 \sim 350$	220~420	

Approval: NK, ABS, LR, DNV

For Low Temperature Service Steel

APPLICATIONS

FCAW

Seamless flux cored wire for Ar-CO2 gas shielded arc welding of low temperature service steel for offshore structures, etc.

CHARACTERISTICS

SM-3A is a seamless metal type flux cored arc welding wire to be used with Ar-20%CO₂ shielding gas for welding of flat butt and fillet joints.

It assures excellent impact toughness at low temperature down to 40°C.

It has also good usability with high efficiency, less spattering and beautiful bead appearance.

Moreover, due to its seamless surface, it provides various advantages better than conventional open-seam flux cored wires.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
$Ar+20\%CO_2$	0.05	0.66	1.69	0.008	0.013

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J -40°C	
540	600	29	72	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4	
Current	F	$200 \sim 350$	$250 \sim 400$	
Α	H-Fil	200~350	$250 \sim 400$	

Approval: ABS, LR, DNV, BV, GL

SF-3E

*AWS A5.36 E81T1-C1A4-CS1

For Low-Ally Steel

APPLICATIONS

All position welding for YS420 down to -40°C, 100%CO₂ shielding gas

CHARACTERISTICS

SF-3E is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas and designed for shipbuilding and offshore structure welding. Weld metal shows excellent toughness in low temperature range down to -40 °C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni
0.05	0.42	1.30	0.013	0.004	0.44

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -40°C, J
540	590	28	115

■ TYPICAL WELD JOINT TEST

Base metal	Plate thickness mm	Welding position	Heat input kJ/cm	Yield strength MPa	Tensile strength MPa	Charpy 2V-notch at -40°C, J	CTOD mm,at -10°C
YS360	50	Vertical-up	22	590	650	105	0.72

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm) F, H Current		1.2	1.4
C .	F, H	180~300	200~400
Current	H-Fil	180~300	200~400
	V-up, OH	180~260	200~280

Approval: NK, ABS, LR, DNV

FCAW

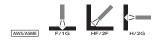
For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for automobiles, rolling stock, machinery, air conditioners, tools light gauge steel, steel frames, bridges and ships.

CHARACTERISTICS

SX-26 is seamless flux cored arc welding wire filled mainly with metallic powder and is used with CO_2 shield gas. Arc is softer and fume is less and weld metal in holizontal position (2G) is bringed better than solid wires with CO_2 . And penetration is gave as depth as solid wires with CO_2 . Continuous multi-layer welding like solid wires is possible due to the small amount of slag.


The wire is fed straight and easily since it has no seam and, therefore, is suitable for high current and high efficiency automatic welding including robots.

GUIDELINES FOR USAGE

1. It should be been that distance between tip and base metal is $20\sim30$ mm for 1.2mm diameter and $20\sim35$ mm for 1.4mm or more diameter.

2. It should be been that flow rate of sheilding gas is $20{\sim}25 {\rm L/min}.$

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	С	Si	Mn	Р	S	Ti
_	0.07	0.60	1.30	0.014	0.011	0.03

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength	Tensile Strength,	Elongation,	Charpy 2V-notch J
MPa	MPa	%	0°C
532	620	25	84

TYPICAL WELD JOINT TEST

1	Heat input	Inter-	Joint Ter	nsile Test	Charpy	Wire		
		pass temp. °C	Tensile Strength MPa	Location of Fracture	2V-notch J 0°C		Base metal	Groove geometry
	30	≤ 250	539	Base tetal	93	1.4	SN490B 20mm	35° single bevel groove R.G: 8mm

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
Current	F	$200 \sim 380$	$220 \sim 450$
range	Н	$200 \sim 380$	$220 \sim 380$
А	H-Fil	200~320	220~400

32

For Mild Steel and 490 to 550MPa High Tensile Strength Steel

APPLICATIONS

SX-55

Welding of mild steel and 490 to 550MPa high tensile strength steel for construction of Steel structural.

CHARACTERISTICS

SX-55 is seamless flux cored arc welding wire filled mainly with metallic powder and is used with CO_2 shield gas. Arc is softer and fume is less and weld metal in holizontal position (2G) is bringed better than solid wires with CO_2 . And penetration is gave as depth as solid wires with CO_2 . Continuous multi-layer welding like solid wires is possible due to the small amount of slag.

The wire is fed straight and easily since it has no seam and, therefore, is suitable for high current and high efficiency automatic welding including robots.

In case of welding for 490MPa high tensile strength steel, it can be applyed a administrative limited welding conditions (H/I: 40kJ/cm·I-P/Temp.: 350°C) on JASS6 of Arcitectual institute of Japan.

GUIDELINES FOR USAGE

- 1. It should be been that distance between tip and base metal is $20\sim30$ mm for 1.2 mm diameter and $20\sim35$ mm for 1.4 mm or more diameter.
- 2. It should be been that flow rate of sheilding gas is 20~25L/min.
- 3. In the welding for 520MPa steel, it can be applyed $H/I \leq 40 kJ/cm$ and I-P/Temp. $\leq 350^{\circ}C$.
- 4. In the welding for 550MPa steel, it should be asked welding enditions to steel supliers.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Mo
0.07	0.60	1.30	0.013	0.012	0.20

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength	Tensile Strength,	Elongation,	Charpy 2V-notch J
MPa	MPa	%	0°C
570	639	25	121

TYPICAL WELD JOINT TEST

Heat input kJ/cm	Inter- pass temp. °C	Joint Ter Tensile Strength MPa	nsile Test Location of Fracture	Charpy 2V-notch J 0°C	Wire Diameter mm	Base metal	Groove geometry
40	≤ 350	544	Base tetal	106	1.4	SN490B 20mm	35° single bevel groove R.G: 8mm

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
Current	F	200~380	$220 \sim 450$
range	Н	200~380	220~380
Α	H-Fil	200~320	220~400

Approval:

Flux Cored Arc Welding Wires for Mild Steel and 490~550MPa High Tensile Strength Steel

Brand	Shield	Specification		Dia.		
Name	Gas	JIS	AWS	mm	Application and Characteristics	
SM-1S	CO_2	Z 3313 T49J0T1- 0CA-UH5	☆ A5.36 E70T1-C1A0- G	$1.2 \\ 1.4 \\ 1.6$	Less slag quantity type seamless flux cored wire filled mainly with metallic powder. Arc is more stable than CO_z solid wires, spatters are few and bead shape is excellent in flat butt and horizontal fillet welding.	
	Welding Position	AWS/ASME F	/1G HF/2F			
SM-1A	Ar + 20% CO ₂	Z 3313 T49J0T15- 0MA-UH5	☆ A5.36 E70T15- M21A2-CS1	$1.2 \\ 1.4 \\ 1.6$	Seamless flux cored wire filled mainly with metallic powder to be used with Ar+CO ₂ shield gas. Arc is soft, spatters are extremely few and high efficiency welding is possible.	
	Welding Position	AWS/ASME F	/1G HF/2F	-		

te · Figure of mustration	relating to ti	ie symbol c	n weiunig j	JOSITIOII III	the table h	16
AWS/ASME F/1G	HF/2F	H/2G	OH/4G	→ VU/3G	↓ ↓ VD/3G	

	Т	Typical Chemical Composition of Weld Metal (%)					Typical Mechanical Properties of Weld Metal				
	С	Si	Mn	Р	s	Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V- notch at 0°C, J	of Current	
_	0.05	0.52	1.56	0.015	0.009	510	590	28	98	DC (+)	
_	0.04	0.45	1.60	0.011	0.013	480	560	30	110	DC (+)	

SMAW

For Mild Steel

APPLICATIONS

Welding of mild steel sheets for ships, rolling stock and structures. Applicable to welding of vertical downward and finishing of heavy structural works.

CHARACTERISTICS

FT-51 is a high titania potassium type electrode for all positions and assures easy operation even in vertical downward position. Spatters are less and bead appearance is beautiful. Welding distortion is low on a thin steel sheet, because penetration is shallow.

GUIDELINES FOR USAGE

- 1. If coating flux absorbs excessive moisture, arc and slag fluidity become unstable and spatters increase. And undercuts and blowholes are apt to occur. Damp electrodes should be redried at 70~120°C for 60 minutes.
- 2. In inclined and vertical downward positions, touch electrode tip lightly to the base metal and deposit a stringer bead with electrode slope 40~80°C.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.08	0.33	0.42	0.014	0.013

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
460	510	25	60

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	r (mm)	2.0	2.6	3.2	4.0	5.0	6.0
Length (mm)		250	350	350	400	400	400
<i>a</i> ,	F	30~70	50~100	60~130	110~170	150~220	200~280
Current	VD	30~70	50~100	60~130	110~170	150~220	_
А	VU, OH	30~70	50~100	60~130	100~150	130~190	_

S-16W

JIS Z 3211 E4316 *AWS A5.1 E7016

For uranami welding in all positions

APPLICATIONS

Uranami (sound penetration bead) welding of mild steel pipes for ships, pressure vessels and pipelines.

CHARACTERISTICS

S-16W is a low hydrogen type electrode for uranami welding in all positions. In low current range in root pass welding of pipes, a sound penetration bead without blowholes is obtained due to stable arc, strong arc force. And excellent slag fluidity and coverage.

GUIDELINES FOR USAGE

- 1. DC(-) should be used for uranami welding. However AC or DC(+) have to be used on AWS.
- 2. 3.2mm diameter electrode is recommended for all position welding of pipes with 6-15mm wall thickness.
- 3. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 4. Arc should be started on a small plate or the side of the groove and cut after moving crater to the side of the groove
- 5. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.07	0.52	0.89	0.010	0.002

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -30°C, J
462	546	29	192

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)><AWS: AC or DC(+)>

Diameter (mm)		2.6	3.2	4.0
Length (mm)		350	400	400
	F	70~100	100~140	$150 \sim 190$
Current	OH	60~90	80~120	$110 \sim 150$
А	VU	60~90	80~120	110~150
	Uranami welding	40~80	60~110	80~140

Identification color: End-red, secondary-red

NITTETSU-16W

JIS Z 3211 E4316 AWS A5.5 E7016-G

For uranami welding in all positions

APPLICATIONS

SMAW

Uranami (sound penetration bead) welding of mild steel pipes for ships, pressure vessels and pipelines.

CHARACTERISTICS

NITTETSU-16W is a low hydrogen type electrode for uranami welding in all positions. In low currentrange in root pass welding of pipes, a sound penetration bead without blowholes is obtained due tostable arc, strong arc force. And excellent slag fluidity and coverage.

GUIDELINES FOR USAGE

- 1. DC(-) should be used for uranami welding. However AC or DC(+) have to be used on AWS.
- 2. 3.2mm diameter electrode is recommended for all position welding of pipes with 6-15mm wallthickness.
- 3. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 4. Arc should be started on a small plate or the side of the groove and cut after moving crater to theside of the groove
- 5. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.11	0.87	1.02	0.014	0.002

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point,	eld Point, MPa MPa MPa MPa	Elongation, %	Charpy 2V-notch J	
IVIT a			at -20°C	at -40°C
499	609	32	104	56

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)><AWS: AC or DC(+)>

Diameter (mm)		2.6	3.2	4.0
Length (mm)		350	400	400
	F	50~100	70~130	100~150
Current	OH	40~80	60~130	90~150
А	VU	40~80	60~130	90~150
	Uranami welding	40~80	60~110	80~140

For 490MPa High Tensile Strength Steel and uranami welding in all positions APPLICATIONS

NITTETSU-56

Uranami (sound penetration bead) welding of 490MPa high tensile strength steel pipes for ships, pressure vessels and pipelines.

CHARACTERISTICS

NITTETSU -56 is a low hydrogen type electrode for uranami welding in all positions. In low current range in root pass welding of pipes, a sound penetration bead without blowholes is obtained due to stable arc, enough shielding effect. And excellent slag fluidity and coverage.

GUIDELINES FOR USAGE

- 1. $\mathrm{DC}(\cdot)$ should be only used for uranami welding. However AC or $\mathrm{DC}(+)$ have to be used on AWS.
- 2. Backstep method should be applied to prevent bloeholes and pits at arc starting and arc length should be kept as short as possible during welding.
- 3. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 4. Arc should be started on a small plate or the side of the groove and cut after moving crater to the side of the groove.
- 5. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.07	0.54	1.17	0.014	0.002

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength,	Elongation, %	Charpy 2	2V-notch, J
MPa	MPa		-20°C	-40°C
480	586	37	139	79

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)><AWS: AC or DC(+)>

Diameter (mm)		2.6	3.2	4.0
Length (mm)		350	400	400
	F	60~100	90~140	120~180
Current	OH	$50 \sim 90$	80~120	$100 \sim 160$
А	VU	50~90	80~120	$100 \sim 160$
	Uranami welding	40~80	60~110	80~140

SMAW

JIS Z 3211 E4916-U *AWS A5.1 E7016

For 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of 490MPa high tensile strength steel for ships, structures, bridges and pressure vessels.

CHARACTERISTICS

L-55 is a low hydrogen type electrode for all positions. Weld metal shows excellent crack resistance, mechanical properties and X-ray quality. Vertical and overhead welding is very easy.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pits at arc starting and arc length should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.07	0.62	1.18	0.011	0.008

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -30°C, J
480	550	30	160

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	(mm)	2.6	3.2	4.0	5.0	6.0	8.0
Length (r	nm)	300	400	450	450	450	450
Current	F, H-Fil, H	60~110	70~140	120~190	190~240	250~300	340~390
A	V-up,OH	60~90	60~130	90~150	130~170	_	_

Approval: NK, ABS, LR, DNV, BV

40

Identification color: End-light green, secondary-yellow

L-55LH

JIS Z 3211 E4916-U *AWS A5.1 E7016

For 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of 490MPa High Tensile Strength Steel for ships, structures, bridges and pressure vessels.

CHARACTERISTICS

L-55LH is a low hydrogen type electrode for all positions. Diffusible hydrogen in the weld metal 100 grams is 5mL below. Therefore the weld metal shows excellent crack resistance and X-ray quality. Weldability and mechanical properties are good due to arc stable. And vertical and overhead welding is very easy.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pits at arc starting. Arc length should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

C	Si	Mn	P	S
0.07	0.61	1.12	0.014	0.001

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -30°C, J
466	577	28	141

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	r (mm)	2.6	3.2	4.0	5.0	6.0	8.0
Length (1	nm)	300	400	450	450	450	450
Current	F, HF, H	60~110	70~140	120~190	190~240	$250 \sim 300$	340~390
А	VU, OH	60~90	60~130	90~150	130~170	_	_

Identification color: End-light blue, secondary-pink

SMAW

JIS Z 3211 E4916 *AWS A5.1 E7018

For 490MPa high tensile strength steel

APPLICATIONS

Welding of 490MPa high tensile strength steel for ships, steel frames, bridges and pressure vessels.

CHARACTERISTICS

7018 is an Iron powder low hydrogen type electrode containing a large amount of iron powder in coating flux. Deposited metal gives excellent mechanical properties, crack resistance and X-ray quality. Weldability is good and high welding efficiency is obtained.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pits at arc starting and arc length should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

TW-50

JIS Z 3211 E4948 *AWS A5.1 E7048

For 490MPa High Tensile Strength Steel

APPLICATIONS

Tack welding of mild steel and 490MPa high tensile strength steel for ships, structures and bridges.

CHARACTERISTICS

TW-50 is a low hydrogen type electrode for tack welding in all positions. Crack resistance, arc restriking, slag removal and resistance to moisture absorption are excellent. Vertical downward welding is easy and assures high efficiency using the same current as flat position.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pits at arc starting and arc length should be kept as short as possible.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.08	0.45	1.02	0.010	0.007

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -30°C, J
460	530	30	110

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm))	2.6	3.2	4.0
Length (mm)		300	350	400
Current A	F, H-Fil, H	100~130	130~160	$170 \sim 220$
	V-down	$110 \sim 150$	140~170	190~230
	OH	70~90	110~140	140~170

Approval: NK, ABS, LR, DNV, BV

Identification color: End-brown, secondary-light yellow

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)						
С	C Si Mn P					
0.08	0.57	0.92	0.013	0.010		

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -30°C, J
460	530	31	110

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

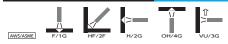
Identification color: End-light vellow, secondary-green

Diameter	r (mm)	2.6	3.2	4.0	5.0	6.0
Length (mm)	350	350	400	400	450
Current	F	70~100	100~140	$150 \sim 200$	190~240	250~310
А	VU, OH	60~90	80~120	$120 \sim 160$	140~180	_

SMAW

APPLICATIONS

Welding of 540MPa high tensile strength steel for pressure vessels, bridges, machineries etc.


CHARACTERISTICS

L-53 is a ultra low hydrogen type electrode for all positions. Weld metal shows excellent mechanical properties even after long postweld PWHT.

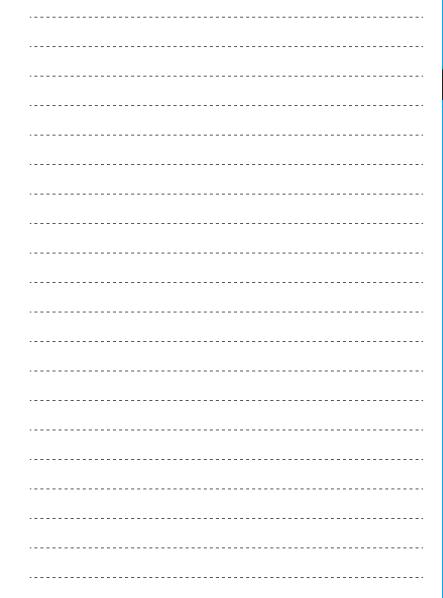
GUIDELINES FOR USAGE

- Electrodes should be redried at 300~350°C for 60 minutes before use.
 Backstep method should be applied to prevent blowholes and pits at arc starting and arc length should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

For 540MPa High Tensile Strength Steel

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)


				<u> </u>			
С	Si	Mn	Р	S	Mo		
0.08	0.59	0.93	0.015	0.003	0.18		

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

0.2% Proof Stress, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J	PWHT
530	590	30	210	As-welded
460	540	32	250	620°C×15h

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (m	m)	3.2	4.0	5.0	6.0
Length (mm))	350	400	400	450
Current	F, H-Fil, H	90~140	130~190	180~240	250~310
А	V-up,OH	80~120	110~170	140~200	

Covered Arc Welding Electrodes for Mild Steel and 490~550MPa High Tensile Strength steel

					-	
Brand		fication lor	Specif	ication	Dia.	Application and Characteristics
Name	End	Secon- dary	JIS	AWS	mm	
S-03	Scarlet	Yellow	Z 3211 E4303	☆ A5.1 E6013	$3.2 \\ 4.0 \\ 5.0 \\ 6.0$	Lime-titania type electrode showing excellent weldability in vertical and overhead positions. A smooth and beautiful bead without undercuts and excessive reinforcement is obtained due to good slag fluidity and coverage.
	Welding Position		AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
NS- 03Hi	Blue	_	Z 3211 E4303-U	☆ A5.1 E6013	$2.0 \\ 2.6 \\ 3.2 \\ 4.0 \\ 5.0 \\ 6.0$	Lime-titania type electrode assuring high ef- ficiency in welding complicated structure of thin and medium thick plates. It produces a small amount of fumes and is highly resistant to mois- ture absorption. Arc is sharp, concentrated and easy to restrike. Slag is easy to remove. It can deposit as mooth and long bead even in inclined position.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
S-03Z	Blue	Scarlet	Z 3211 E4303-U	☆ A5.1 E6013	2.0 2.6 3.2 4.0 5.0	Lime-titania type electrode for steel frames, bridges and sheet metals. Arc is soft, spatters are few, and arc restriking and slag removal are ex- cellent in horizontal fillet welding. It can deposit a smooth and long bead.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
G-200	Green —		Z 3211 E4319-U	☆ A5.1 E6019	$\begin{array}{c} 2.6 \\ 3.2 \\ 4.0 \\ 4.5 \\ 5.0 \\ 6.0 \\ 7.0 \end{array}$	Ilmenite type electrode with excellent mechanical properties, crack resistance and X-ray quality. Operation is easy in all positions due to its soft arc and stable slag fluidity. It is extensively used throughout industry for all types of work.
	Welding	Position	AWS/ASME F/1G		HF/2F	H/2G OH/4G VU/3G
A-200	Purple	_	Z 3211 E4319	☆ A5.1 E6019	$\begin{array}{c} 2.0 \\ 2.6 \\ 3.2 \\ 4.0 \\ 4.5 \\ 5.0 \\ 6.0 \end{array}$	Ilmenite type electrode with excellent operational characteristics and weldability. Sharp arc and excellent slag coverage assure beautiful bead ap- pearance with fine ripples and without undercuts. Operational characteristics in vertical and over- head positions excel other ilmenite electrodes.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
G-300	Scarlet	_	Z 3211 E4319	☆ A5.1 E6019	$2.6 \\ 3.2 \\ 4.0 \\ 4.5 \\ 5.0 \\ 6.0 \\ 7.0$	Ilmenite type electrode with excellent weldability especially in vertical upward position. Beautiful bead appearance free from defects such as incom- plete penetration and undercuts is obtained since manipulation is easy due to smooth flow of slag round to the front of weld and even solidification of molten metal. Weld metal shows good impact properties and ductility.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Typ	oical Che of We	emical (eld Meta		tion		Typical Mechanical Properties of Weld Metal						
С	Si	Mn	Р	s	Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J				
0.08	0.12	0.42	0.018	0.012	410	470	28	110				
0.07	0.17	0.39	0.015	0.009	435	490	28	100				
0.07	0.19	0.41	0.018	0.014	430	460	30	110				
0.07	0.08	0.46	0.015	0.012	390	450	29	−20°C 72				
0.08	0.12	0.40	0.019	0.011	410	460	28	-20°C 73				
0.08	0.13	0.53	0.018	0.010	400	460	30	-20°C 94				

1

SMAW

Covered Arc Welding Electrodes for Mild Steel and 490~550MPa High Tensile Strength steel

Brand		ication lor	Specifi	ication	Dia.	Application and Observatoriation	
Name	End	Secon- dary	JIS	AWS	mm	Application and Characteristics	
L-43LH	Silver	Indigo blue	Z 3211 E4316	_	3.2 4.0 5.0 6.0	Extra low hydrogen type electrode suitable for welding thick mild steel with high restraint where cracks tend to occur, root pass of butt joints of 490~780MPa high tensile strength steel and overhead fillet with low heat input of 490MPa high tensile strength steel due to its excellent crack resistance. Preheating temperature re- quired to prevent cracks in the first pass welding can be decreased	
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G	
S-16	Red	Silver	Z 3211 E4316-U	☆ A5.1 E7016	2.6 3.2 4.0 5.0 6.0 8.0	Low hydrogen type electrode with excellent crack resistance, mechanical properties and X-ray qual- ity. Operation is easy in all positions due to its stable arc and wide welding current range. It is extensively used throughout industry for all types of work.	
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G	
S-16LH	Red	Orange	Z 3211 E4916	☆ A5.1 E7016	$3.2 \\ 4.0 \\ 5.0 \\ 6.0$	Low hydrogen type electrode having excellent crack resistance. Diffusible hydrogen content is extremely low and the strength of weld metal is slightly lower than the other low hydrogen type electrodes. It is suitable, therefore, for welding those plates which have high restraint and are apt to crack.	
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G	
S-16V	Red	Blue	Z 3211 E4340-U	☆ A5.1 E7048	3.2 4.0 4.5 5.0 5.5 6.0	Low hydrogen type electrode for vertical down- ward butt and fillet welding. Welding efficiency is twice as high as vertical upward welding since high current is used. Weld metal shows high crack resistance and excellent mechanical prop- erties and, therefore, it is applicable for various types of steel. Electrodes are used with vertical downward gravity welders and assure high ef- ficiency.	
			1			1	

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Тур	ical Che of We	emical (eld Meta	Composi al (%)	tion		Typical Mechanical Properties of Weld Metal						
С	Si	Mn	Р	s	Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J				
0.04	0.41	0.34	0.008	0.005	400	460 33		-30°C 180				
0.07	0.58	1.10	0.011	0.008	460	540	32	-30°C 180				
0.05	0.48	0.64	0.012	0.007	440	510	32	−30°C 200				
0.08	0.53	0.84	0.014	0.011	440	540	31	170				

SMAW

Covered Arc Welding Electrodes for Mild Steel and 490~550MPa High Tensile Strength Steel

Brand	ldentif Co	ication lor	Specifi	ication	Dia.	Application and Characteristics
Name	End	Secon- dary	JIS	AWS	mm	Application and Unaracteristics
EX-55	Green	Purple	Z 3211 E4916-U	☆ A5.1 E7016	$3.2 \\ 4.0 \\ 5.0 \\ 6.0 \\ 7.0$	Low hydrogen type electrode which produces an extremaly small amount of fumes. Weldability and X-ray properties are excellent and extremely low diffusible hydrogen content of weld metal as- sures excellent crack resistance and mechanical properties.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
EX-50F	Blue	Pink	Z 3211 E4940-G	☆ A5.1 E7024	$\begin{array}{c} 4.0 \\ 4.5 \\ 5.0 \\ 5.5 \\ 6.0 \\ 6.4 \end{array}$	Iron powder titania type electrode which pro- duces an extremely small amount of fumes. It is used for plates with carbon equivalent (C+1/6M n+1/5Cr+1/5Mo+1/5V+1/15Ni+1/15Cu) less than 0.36% and thickness up to 25 mm, and gives a beautiful bead of equal leg length and free from undercuts. Slag is easy to remove and weld metal is not susceptible to primer. It also is suitable for gravity welding.
	Welding Position		AWS/ASME	F/1G	HF/2F	:
M-50G	Light green	_	Z 3211 E4940-G	★ A5.1 E7024	3.2 4.0 4.5 5.0 5.5 6.0	Iron powder titania type electrode for weiding 490MPa high tensile strength steel up to 12.7 mm thick. It assures a beautiful bead of equal leg length and free from undercuts. Spatters are few and slag is easy to remove. It is not susceptible to primer and can deposit a long bead. It also is suitable for gravity welding.
	Welding	Position	AWS/ASME	F/1G	HF/2F	
LM-55G	Light green	Purple	_	☆ A5.1 E7028	5.0 5.5 6.0 6.4 7.0 8.0	Iron powder low hydrogen type electrode for flat and horizontal fillet welding. It assures beautiful, flat bead free from undercuts and of equal leg length. Weld metal shows excellent mechanical properties and crack resistance. It also is suitable for gravity Welding.
	Welding	Position	AWS/ASME	F/1G	HF/2F	

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Тур	ical Che of We	emical (eld Meta	Composi al (%)	tion		Typical Mechan of Wel	nical Properties d Metal	
	С	Si	Mn	Р	s	Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
	0.08	0.60	1.10	0.010	0.005	510	570	31	-30°C 160
_	0.07	0.39	0.76	0.017	0.010	460	520	27	88
-	0.07	0.37	0.90	0.016	0.010	470	540	30	100
	0.06	0.20	1.19	0.014	0.010	460	530	29	120

1

SMAW

YF-15 × Y-D YF-15 × Y-CM

*JIS Z 3183 S50J2-H *AWS A5.17 F7A4-EH14 F7P4-EH14 *JIS Z 3183 S50J2-H *AWS A5.23 F8A2-EG-A3 F7P2-EG-A3

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

SAW

Flat butt and fillet welding of steel frames, bridges, machinery and storage tanks. The combination with Y-D wire is used for mild steel and 490MPa high tensile strength steel and Y-CM for 490MPa high tensile strength steel.

CHARACTERISTICS

The combination assures excellent impact properties, especially stable impact properties at low temperatures with $YF15 \times Y-CM$ in single-layer welding.

GUIDELINES FOR USAGE

- 1. An excessive amount of flux may cause disorder of bead ripples in high current welding.
- 2. An excessively narrow groove in multi-layer welding should be avoided since it may deteriorate slag removability.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	Combination	C	Si	Mn	р	s	Mo	Base	Plate Thickness	Welding
	Combination				1	6	1010	Metal	mm	Method
	YF-15	0.14	0.45	1.56	0.020	0.016		SM520C	38	X groove,
А	×Y-D	0.14	0.40	1.00	0.020	0.010		51415200	00	multi-layer
D	YF-15	0.10	0.90	1.05	0.010	0.014	0.10	SM490B	13	I groove, one
В	×Y-CM	0.10	0.39	1.25	0.018	0.014	0.19	SM490B	15	pass both sides

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

		Joint Tensile Test		Charpy 2 V-notch, J				Plate Thickness	Welding
	Combination	Tensile Strength,	Location of	_100C	-20°C	0°C	Base Metal	mm	Method
		MPa	Fracture	-40 U	-20 0	00			Method
Δ	YF-15	560	Base	36	51	76	SM520C	38	X groove,
A	×Y-D	360	metal	30	91	10	SIM020C	- 00	multi-layer
D	YF-15	550	Base	41	65	84	SM490B	13	I groove, one pass
В	×Y-CM	550	metal	41	69	04	SM490D	15	both sides

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness	Wire Dia.	Groove	Pass	Current,	Voltage,	Speed,	Note
mm	mm	Geometry	rass	А	V	cm/min	note
		×70°-y 1~2	1	800	36	30	
38	4.8		2	740	36	30	Multi-
20			3	940	36	30	laver
		×80~~ 3~5	4, 5	740	36	32	
13	1.0		1	650	32	60	one pass
19	4.8		2	750	34	60	both sides

Approval: YF-15 × Y-D ; NK, ABS, LR, DNV, BV, CR, GL YF-15 × Y-CM ; NK, ABS, LR, DNV, BV

YF-15B × Y-DM3

*JIS Z 3183 S532-H *AWS A5.23 F7A4-EG-G F7P4-EG-G

For 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of thick 490MPa high tensile strength steel plates to be used as welded or after post welding stress relieving annealing for ships, machinery and pressure vessels.

CHARACTERISTICS

Sufficient strength and stable impact values are assured even after stress relieving annealing for long hours in multi-layer welding of thick plates.

GUIDELINES FOR USAGE

- 1. An excessive amount of flux may cause uneven ripples in high current welding.
- 2. An excessively narrow groove should be avoided since it makes slag difficult to remove.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Mo	Base Metal	Plate Thickness mm	Welding Method
0.08	0.43	1.57	0.021	0.010	0.25	SB480	100	Multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Tensile Test				V-notch, J				
Test Temp- erature °C	Yield Point, MPa	Tensile Strength, MPa	Elon- gation, %	-30°C	0°C	PWHT	Base Metal	Plate Thickness mm	Welding Method
R. T.	550	610	25	54	110	As welded	SB480	100	Multi-layer
R. T.	460	540	32	98	130	630°C×13h	5D400	100	Mutti Tayer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
100	4.8		$1 \sim 58$	(L) 650 (T) 700	33 34	60	Multi- layer

Approval:

NF-1 × Y-D

*JIS Z 3183 S532-H *AWS A5.17 F7A4-EH14 F7P2-EH14

F/P2-EHI

For Narrow gap of Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

SAW

Narrow gap welding and single flat butt welding of mild steel and 490MPa high tensile strength for pressure vessels, steel frames, bridges and heavy electric machinery.

CHARACTERISTICS

In use of NF-1, outstanding efficiency and economy are obtained in multi-layer (one pass one layer) narrow gap welding of thick plates. In other words, flux consumption rate is low and slag is extremely easy to remove.

Weld metal of NF-1 x Y-D shows excellent toughness. Weldability and mechanical properties are excellent also in high current welding with normal groove.

GUIDELINES FOR USAGE

An excessive amount of flux in a deep groove may cause disorder of bead ripples.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	С	Si	Mn	Р	\mathbf{S}	Base Metal	Plate Thickness mm	Welding Method
Α	0.08	0.27	1.30	0.018	0.011	SM490B	20	multi-layer
В	0.10	0.18	1.39	0.020	0.007	A516Gr70	100	I narrow groove, multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Tensile Strength,	Location of	Elon-gation,	Charp	y 2 V-n	otch, J	PWHT	Base	Plate Thickness	Welding
	MPa	Fracture	%	-40°C	−20°C	0°C	гwпi	Metal	mm	Method
А	490	540	32	81	140	170	As Weld	SM490B	20	multi- layer
В	490	570	30	39	130	130	625°C ×10hr	A516Gr70	100	I narrow groove, multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry mm	Pass	Current, A	Voltage, V	Speed, cm/min	Note
20	4.8		1~11	500	36	30	Multi- layer
			1~5	450	31	30~35	
			6~13	500	32	35	M14:
100	4.8		$14 \sim 20$	550	33	35	- Multi- layer
			$21 \sim 26$	600	34	35	
			27	650	34	35	

NF-1 × Y-DM3

*JIS Z 3183 S58J2-H *AWS A5.23 F8A4-EG-G F8P2-EG-G

For Narrow gap of Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Narrow gap welding and single layer welding of 490MPa high tensile strength for pressure vessels, heavy electric machinery.

CHARACTERISTICS

Outstanding efficiency and economy are obtained in multi-layer narrow gap welding of thick plates since flux consumption rate is low and slag is extrmely easy to remove. Weld metal shows excellent toughness. Weldability and mechanical properties are excellent also in high current welding with normal groove and strength is sufficient even after stress relief annealing for long hours.

GUIDELINES FOR USAGE

An exessive amount of flux may cause disorder of bead ripples in narrow groove welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

		С	Si	Mn	Р	\mathbf{S}	Mo	Plate Thickness mm	Base Metal	Welding Method
1	ł	0.07	0.20	1.50	0.015	0.004	0.011	20	SM490B	multi-layer
I	3	0.06	0.24	1.38	0.014	0.008	0.007	100	A516Gr70	I narrow groove, multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Yield Point, MPa	Tensile Strength, MPa	Elon-gation, %	Charpy 2 V-notch, J -40°C -20°C 0°C		PWHT	Base Metal	Plate Thickness mm	Welding Method	
A	550	600	29	37	74	140	628℃ ×4hr	SM490B	20	multi- layer
В	510	590	33	64	93	150	625°C ×10hr	A516Gr70	100	I narrow groove, multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thick mm	ness Wire Dia. mm	Groove Geometry mm	Pass	Current, A	Voltage, V	Speed, cm/min	Note
20	4.8		1~11	500	32	30	Multi- layer
			1~3	450	30~31	25	
	(1) 0.0	5°	4 01	(L) 500	31~32	40.50	3.6.1.
100	(L) 3.2 (T) 3.2	\$100	4~21	(T) 550	31~32	40~50	Multi- layer
	(1) 3.2	-+ 15 +-	$21 \sim 26$	(L) 600	32	50	
			27	(T) 650	31	- 50	

Approval:

$NF-11H \times Y-D$ NF-11H × Y-DM3 $NF-11H \times Y-E$

*JIS Z 3183 S502-H/*AWS A5.17 F7A4-EH14

*AWS A5.23 F7A6-EG-G

*AWS A5.23 F8A4-EG-G

SAW

APPLICATIONS

NF-11H × Y-D: Horizontal welding for HT490 MPa grade steel used in large scale tank NF-11H × Y-DM3: Horizontal welding for aluminium-killed low temperature service NF-11H × Y-E: Horizontal welding for HT550-610 MPa grades

Submerged Arc Welding Consumables for Horizontal position

CHARACTERISTICS

NF-11H is a fused flux suitable to horizontal welding for a circumferential joint in a large scale of cylindrical tank.

GUIDELINES FOR USAGE

- 1. Flux should be dried at 200~350°C for 60 minutes or over before welding.
- 2. Foreign materials such as rust and oil in weld area should be completely removed to prevent weld crack and pits. 3. Welding current for 1st run should be kept less than 500 amps. and welding
- speed should be less than 40 cm/min.
- 4. Recommended welding power source is a DC with drooping characteristic.

WELDING POSITION

AWS/ASME H/2G

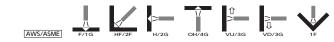
■ SIZE AND PACKAGE OF FLUX AND WIRE)

Fl	ux	Wire			
Particle size, mesh	Unit weight,KGS	Recommended dia,mm	Unit weight,KGS		
2×X200	25	3.2 or 2.4	25		

TYPICAL PROPERTIES OF BUTT WELD METAL (Horizontal MULTI-PASS)

Wire		Typica	l chemica	l composi	tion,%		Tensile	Base	Charpy 2 V-notch,J		
Used	С	Si	Mn	Р	s	Mo	Strength, MPa	Metal	−46°C	−20°C	0°C
Y-D	0.08	0.41	1.84	0.021	0.008		590	HT490	69	110	150
Y-DM3	0.07	0.24	1.31	0.015	0.005	0.13	510	YP325	86	150	-
Y-E	0.09	0.29	1.63	0.023	0.005	tr.	640	HT610	60	110	150

TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS


Wire Dia. mm	Groove Geometry		ıss 1ber	Current A	Voltage V	Speed cm/min	Heat input kJ/cm	Others
	15		1	390-410	22-24	25	21-24	
	BP 2 3 FP	BP	2	390-410	22-24	35	15-17	
	→ * ≯	DF	3	390-410	22-24	30	17-20	1)Horizontal angle of
			4	390-410	22-24	40-45	11-15	torch: 22.5 deg.
3.2		Arc-ai	r goug	ing (9.5mmφ-	carbon rod w	ith 500 A-40 V	V-95 cm/min)	2)Wire extension:
0.2			1	440-460	22-24	40	15-17	25mm
			2	440-460	22-24	40	15-17	3)Burden height of flux: 35-40 mm
		FP	3	440-460	22-24	40	15-17	nux. 55 40 mm
	19 <>		4	440-460	22-24	40-45	13-17	

 • •
 • •
 •••

Submerged Arc Welding Materials for Mild Steel and 490^{~550}MPa High Tensile Strength Steel

	Spe	cification		Typi	cal Che	emica f Wel
Brand Name	JIS	AWS	Application and Characteristics	С	Si	Mn
NF-45 × Y-B	☆ Z 3183 S422-S	☆ A5.17 F6A2-EM12	High speed butt and fillet welding of medium thick and thick and thin mild steel plates. The combination is has good tolerance to scales and rust of plates and, therefore, welding defects such as pits scarcely occur.	0.08	0.37	1.14
	Weldi	ng Position	AWS/ASME F/1G	1		
NF-45 × Y-D	☆ Z 3183 S501-H	☆ A5.17 F7A0-EH14	High speed flat butt and fillet welding of medium and thin mild steel and 490MPa high tensile strength steel for spiral pipes, steel frames, bridges and rolling stock. The combination has good tolerance to scales and rust of plates and, therefore, welding defects such	0.13	0.18	0.9
I D			as pits and blowholes scarcely occur. Bead appearance is beautiful.	0.10	0.30	1.4
	Weldı	ng Position	AWS/ASME F/1G			
YF-800 × Y-D	☆ Z 3183 S501-H					
	Welding Position		AWS/ASME 1F H/2G			
YF-800S × Y-D	☆ Z 3183 S501-H	☆ A5.17 F7A0-EH14	Flat fillet welding of mild steel and 490MPa high tensile strength steel for construction, bridges and ships. Slag is extremely easy to remove and comes off naturally even in the welding of thin plates where normally slag is not easy to remove.	0.05	0.59	1.4
	Weldi	ng Position	AWS/ASME 1F H/2G			
	☆ Z 3183 ☆ A5.17 S501·H F7A0·EH14		High speed flat butt and fillet welding of thin and			
NF-60 ×			medium thickness plates of mild and 490MPa high strength steel.	0.10	0.30	1.6
	S501-H			0.10	0.30	1.6
×	S501-H	F7A0-EH14	high strength steel.	0.10	0.30	1.6

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Comp Metal	osition (%)			Typical M Properties o	lechan f Weld	ical Metal			R	emarks	
Р	s	Mo	Yield Point,	Tensile Strength,	Elonga- tion,	Charp	y 2 V-notch,	PWHT	Base	Plate Thick-	Welding Metho
			MPa	MPa	%	°C	J	1	Metal	ness mm	
			Joir	nt Tensile Te	st						
0.015	0.012	_	_	470	_	0	56	As welded	SS400	20	Y groove, one pass both sides
			Joi	nt Tensile Te	st						1
0.019	0.018	_	_	460	-	0	64	As welded	SS400	12	I groove, one pass both sides
			Join	nt Tensile Te	st						
0.020	0.013	—	_	550	_	0	35	As welded	SM490B	12	I groove, one pass both sides
0.020	0.006		440	540	29	-20	57	As welded	SM490A	25	Multi-layer
0.020	0.013	_	410	520	28	0	56	As welded	SM400A	25	Multi-layer welding with backing plate
0.018	0.012		_	480	_	0	45	As welded	SM400B	12	I groove, one pass both sides
						-20	54				
_	_	_	430	540	28	0	120	As welded	SM490A	100	Multi-layer
						20	140				

1

Submerged Arc Welding Materials for Mild Steel and 490~550MPa High Tensile Strength Steel

	Spe	cification		Турі	cal Cho	emical f Weld
Brand Name	JIS	AWS	Application and Characteristics	С	Si	Mn
YF-15A ×	☆ Z 3183 S50J2-H	☆ A5.17 F7A4-EH14	Flat butt and fillet welding of mild steel and 490MPa high tensile strength steel for steel frames, bridges, pipes and ships. Bead shapes and appearance are excellent and pock marks scarcely occur in wide range of weld- ing conditions. Slag is easy to remove in flat fillet	0.06	0.49	1.56
Y-D			welding. The combination is economical since wire melting rate is high and flux consumption rate is low.	0.11	0.36	1.55
	Weldi	ng Position	AWS/ASME F/1G			
NF-100 × Y-DS	☆ Z 3183 S532-H	☆ A5.17 F7A6·EH14 F7P6·EH14	Welding of thick plates for 490MPa high strength steel to be used under as welded and postweld teat treatment for structures and pressure ves- sels.	0.07	0.41	1.54
	Weldi	ng Position	AWS/ASME F/1G			
YF-38 ×	☆ Z 3183 S502-H	☆ A5.17 F7A0-EH14	High speed flat butt and fillet welding of mild steel and 490MPa high tensile strength steel for pipes, steel frames, bridges and rolling stock. High efficiency and economy are obtained due to high deposition rate and low flux consumption	0.14	0.17	0.93
Y-D			rate. The combination has good tolerance to rust and dust and assures beautiful bead appearance.	0.10	0.31	1.33
	Weldi	ng Position	AWS/ASME F/1G			
NF-80 × Y-CMS	☆ Z 3183 S502-H	☆ A5.23 F7A2-EA4-A2 F7P2-EA4-A2	Multi-layer narrow gap welding of thick plates for 490MPa high strength steel. In case where tensile strength is required more than 490MPa after PWHT condition the combined wire of Y- CMS is recommended.	0.07	0.34	1.30
	Weldi	ng Position	AWS/ASME F/1G]		

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Comp Metal	osition (%)			Typical M Properties o					R	emarks		
			Yield Point,	Tensile	Elonga-	Charp	y 2 V-notch,		Base	Plate Thick-		
Р	s	Mo	MPa	Strength, MPa	tion, %	°C	J	PWHT	Metal	ness mm	Welding Metho	
						-40	56					
0.019	0.011	_	450	530	32	-20	87	As welded	SM490B	25	Multi-layer	
						0	110	1				
0.015	0.006	_	410	550	31	0	68	As welded	SM490B	19	X groove, one pass both sides	
						-40	60					
			450	560	28	-20	80	As welded				
						0	130				Multi-layer	
_	-	_				-40	98		SM490A	30		
			400	510	36	-20	160	620°C× 5hr				
						0	170					
			Joir	nt Tensile Tes	st							
0.090	0.018			450		-20	71	As	55400	9	I groove, one pass	
0.020	0.018	_		450	-	0	76	welded	SS400	9	both sides	
			Joir	nt Tensile Tes	st							
0.017	0.011			550		-20	26	As	SM490B	10	I groove, one pass	
0.017	0.011					0	45	welded	5145015	10	both sides	
						-20	41					
			440	560	27	0	88	As welded				
0.010	0.010	0.45				20	93		SM490A	100	Multi-lavor	
0.010	0.010	0.40				-20	71		- SM490A	100	Multi-layer	
			430	530	29	0	98	620 °C × 5hr				
						20	120					

Submerged Arc Welding Materials for Mild Steel and 490~550MPa High Tensile Strength Steel

	Spe	cification		Typical Chemical of Weld			
Brand Name	JIS AWS		Application and Characteristics	С	Si	Mn	
NSH-53Z × Y-DL	☆ Z 3183 S502-H	_	Flat butt welding and fillet welding of double bev- el grooves of mild steel and 490MPa high tensile strength steel for steel frames, and corner joint welding of box columns. It is possible to weld up to 60mm thick plates in one run since the flux gives a deep penetration.	0.12	0.28	1.50	
	Weldi	ng Position	AWS/ASME F/1G	1			
NF-1 × Y-E	☆ Z 3183 S532·H ★ A5.23 F8A4-EG-G ☆ A5.23 F8P2-EG-G		Narrow gap welding and single-layer welding of 490MPa high tensile strength steel. Slag is extremely easy to remove and toughness is high. Economical welding is assured since flux con- sumption rate is low.	0.07	0.32	1.89	
	Weldi	ng Position	AWS/ASME F/1G				

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

AWS/ASME F/1G HF/2F H/2G OH/4G VU/3G VD/3G 1F

Comp Metal	osition l (%)			Typical M Properties o				Remarks			
Р	s	Mo	Yield Point, MPa	Tensile Strength, MPa	Elonga ⁻ tion, %	Charp °C	y 2 V-notch, J	PWHT	Base Metal	Plate Thick- ness mm	Welding Method
0.016	0.005		370	530	30	0	50	As welded	SM490B	50	Y groove, one pass with backing plate.
0.011	0.004	_	480	570	28	-40 -20 0	31 76 140	630 °C× 10hr	A516 Gr 70	100	I groove, narrow gap, multi-layer welding (Tandem)

SAW

1

SAW

YM-26

JIS Z 3312 YGW11 *AWS A5.18 ER70S-G

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

GMAW

Welding of mild steel and 490MPa high tensile strength steel for automobiles, rolling stock, machinery, air conditioners, tools light gauge steel, steel frames, bridges and ships.

CHARACTERISTICS

YM-26 is a gas metal arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and weldability is excellent even in high welding current range. High efficiency is obtained since deposition rate is high and penetration is deep.

GUIDELINES FOR USAGE

1. Automatic flat and vertical welding is possibly by applying NAVI-21 process, our manpower saving automatic welding process. For vertical welding, dip transfer welding with 1.2mm diameter wire and 120-240 amperage is recommended.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ti
CO_2	0.07	0.52	1.11	0.017	0.011	0.04

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

PWHT	Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
As-welded	460	560	28	130
625°C×3hr	400	510	31	180

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.0	1.2	1.4	1.6	2.0
0	F	70~250	$100 \sim 350$	$150 \sim 470$	$200 \sim 550$	$250 \sim 650$
Current A	Н	70~250	$100 \sim 350$	$150 \sim 450$	200~450	_
Л	H-Fil	70~250	130~300	$150 \sim 400$	$200 \sim 450$	_

YM-28

JIS Z 3312 YGW12 *AWS A5.18 ER70S-6

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for automobiles, rolling stock, electric appliances, machinery, air conditioners, light gauge steel, pipes, steel frames, bridges and ships.

CHARACTERISTICS

YM-28 is a gas metal arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and weldability is excellent even with low current under 200A. Welding of thin plates in all positions. especially in vertical downward position, is easy. Also, it shows better weldability in high speed welding of thin plates with currents of less than 300A than wires of other types. Also with Ar+CO₂ mixture gas, arc is stable, spatters are few and bead is beautiful in a wide welding current range.

GUIDELINES FOR USAGE

- 1. In vertical downward welding, wire should be held at an angle slightly above horizontal.
- 2. Optimum arc voltage should be selected in accordance with welding current to maintain stable dip transfer mode. If voltage is too high or too low, dip transfer frequency will decrease.

WELDING POSITION

	<u>/\</u>			Ŵ	Û >	2
AWS/ASME	F/1G	HF/2F	H/2G	OH/4G	VU/3G	VD/3G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.08	0.60	1.10	0.014	0.010
$Ar+20\%CO_2$	0.08	0.70	1.25	0.015	0.011

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Shield Gas	Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
CO_2	450	550	27	120
$Ar+20\%CO_2$	480	590	27	130

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		0.9	1.0	1.2	1.4
Current A	F, H-Fil	70~200	$70 \sim 250$	80~350	$250 \sim 550$
	Н	70~140	$70 \sim 160$	80~180	—
	OH	70~100	70~120	80~150	—
	V-up	70~140	70~160	80~180	_
	V-down	70~200	70~220	80~240	—

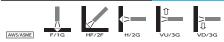
Approval: NK, ABS, LR, DNV, BV

YM-28Z GMAW

For Molten Galvanized Steel, Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of molten galvanized steel for light gauge steel, pipes, steel frames, rolling stock and containers, and mild steel and 490MPa steel for various structures.


CHARACTERISTICS

YM-28Z is a gas metal arc welding wire to be used with CO₂ shield gas. In the welding of molten galvanized steel plates of 270g/m2 (Z27) galvanization level, blowholes and spatters are less and bead is sounder than conventional YGW 14 type wires. It is also used for joining steel plates without galvanization.

GUIDELINES FOR USAGE

1. Optimum arc voltage should be selected in accordance with welding current to carry out stable welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	Shield Gas C		Mn	Р	S	
CO_2	0.05	1.04	1.38	0.005	0.010	

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
460	600	30	76

TYPICAL WELD JOINT TEST

Joint Ter	nsile Test	Bend	l Test			Welding Conditions				
Tensile Strength, MPa	Location of Fracture	Face bend 180°	Root bend 180°	Base metal	Plate Thickness mm	Shield Gas	Current A	Voltage V	Speed cm/min	
460	Base metal	No defect	No defect	SGH400 Z27	3.2	CO_2	160	20	60	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		0.9	1.2	
	F, H-Fil	70~200	$100 \sim 350$	
Current (A)	Н	70~140	80~180	
Current (A)	V-up	70~140	80~180	
	V-down	70~200	80~240	

Approval:

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

YM-28S

Welding of mild steel and 490MPa high tensile strength steel for automobiles. rolling stock, machinery, air conditioners, tools light gauge steel, steel frames, bridges and ships.

CHARACTERISTICS

YM-28S is a gas metal arc welding wire to be used with $Ar+CO_2$ shield gas. Arc is stable, spatters are few, weldability is satisfactory and beautiful and flat bead is obtained in high current spray transfer welding. Welding in vertical position is easy and weld metal shows excellent toughness. It also is suitable for dip transfer welding with low current. It assures excellent weldability and properties of weld metal in pulsed arc welding.

GUIDELINES FOR USAGE

- 1. It be possibility applied splay arc in the high welding current range, short circuit arc in the low welding current range and pulse are welding.
- 2. It should be applied that the shielding gas is $Ar-5\sim 25CO_2$.

WELDING POSITION

AWS/ASME	/\ F/1G	HF/2F	H/2G	Û > ₩	

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	
0.08	0.45	0.85	0.011	0.015	

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point,	Tensile Strength,	Elongation,	Charpy 2	V-notch J
MPa	MPa	%	-20°C	0°C
480	570	31	130	150

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter	(mm)	0.9	1.0	1.2	1.4	1.6
Current F, H-Fil		$70 \sim 200$	$70 \sim 250$	$80 \sim 350$	$150 \sim 400$	$200 \sim 450$
range	V-up	$70 \sim 150$	70~150	80~170	_	_
A H		$70 \sim 150$	70~180	70~200	_	_

Approval: NK, ABS, LR, DNV GL, CR

Gas Metal Arc Welding Wires for Mild Steel and 490~550MPa High Tensile Strength Steel

Brand	Shield	Specification		Dia.			
Name	Gas	JIS	AWS	mm	Application and Characteristics		
YM-SCM	CO2	Z 3312 G49A0C16	☆A5.18 ER70S-3	0.6 0.8	YM-SCM is a gas metal arc welding wire to be used for all positional welding of extremely thin steel plates for automobile and farm machineries compo- nents.		
		Welding	Position	AWS/ASME F/1G H/2G VU/3G			
YM-25	$ \begin{array}{c} \operatorname{Ar} \\ + \\ \operatorname{CO}_2 \end{array} $	Z 3312 YGW16	☆A5.18 ER70S-3	0.8 0.9 1.0 1.2	YM-25 is a gas metal arc welding wire to be used with $Ar+CO_2$ shield gas and is suitable for all position welding of thin plates. Arc is stable, spatters are few and bead is beautiful in dip transfer welding.		
		Welding	Position	AWS/	ASME F/1G OH/4G VU/3G VD/3G		
YM-25S	$\begin{array}{c} \mathrm{Ar} \\ + \\ \mathrm{CO}_2 \end{array}$	Z 3312 YGW16	☆A5.18 ER70S-3		YM-25S is a gas metal arc welding wire to be used with $Ar+CO_2$ shield gas and is suitable for all position welding of thin plates. Arc is stable, spatters are few and bead is beautiful in dip transfer welding.		
		Welding Position		AWS/	ASME F/1G H/2G OH/4G VU/3G		

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Туре		al Compo Metal (%	osition of)	Weld	Ty	pical Mecha	nical Prop	erties of Weld	Mrtal	Type of	
С	Si	Mn	Р	s	Yield Point, MPa	Tensile Strength, MPa	Elonga- tion, %	0.	Charpy 2V-notch 0°C, J		
0.10	0.52	1.05	0.016	0.012	480	560	27	69		DC (+)	
	$Ar+20\%CO_2$										
0.10	0.39	0.80	0.014	0.007	420	540	32	1:	20	1	
					Ar+10%	CO_2				DC (+)	
0.09	0.39	1.06	0.014	0.007	460	550	28	1	50		
					CO_2						
0.10	0.22	0.62	0.015	0.009	400	500	34	1.	40		
				Shi	eld Gas: A	r+20%CO ₂					
0.07	0.49	0.02	0.015	0.010	480	540	29	-20°C 150	As welded	DC (+)	
0.07	0.43	0.43 0.92 0.015 0.010 450	520	30	-20°C 150	620°C×1hr					

Gas Metal Arc Welding Wires for Mild Steel and 490^{~550}MPa High Tensile Strength Steel

Brand	Shield	Specification		Dia.			
Name	Gas	ля	AWS	mm	Application and Characteristics		
YM-24S	$\operatorname{Ar}_{\substack{+\\ CO_2}}^{\operatorname{Ar}}$	Z 3312 G43A2M0	_	1.2	YM-24S is a gas metal arc welding wire to be used with Ar+CO ₂ shield gas. Spatters are extremely few and bead is beautiful especially in high speed welding (80~150cm/min)of thin plates, 2.0~3.2mm, in combi- nation with a power source with high pulse frequency.		
		Welding	Position	AWS/	AWS/ASME F/1G HF/2F		
YM-24T	$\operatorname{Ar}_{\substack{+\\ \mathrm{CO}_2}}^{\operatorname{Ar}}$	Z 3312 YGW16	_	1.2	YM-24T is a gas metal arc welding wire to be used with Ar+CO ₂ shield gas and has favorable gap·proof performance on high-speed welding of thin steel sheets. Weldability, arc is stable, spatters are few and bead is beautiful. The best effect is obtained in combi- nation with inverter controlled pulsed.		
		Welding	Welding Position		AWS/ASME F/1G HF/2F H/2G		
YM-22Z	Ar + CO ₂	_	_	1.2	YM-22Z is a gas metal arc welding wire to be used with Ar+CO ₂ shield gas. Blowholes and spatters are few and bead is sound in one pass fillet welding of al- loified molten galvannealed steel plates of $45 \times 60 g/m^2$ galvanization level. Also, high speed welding of more than 100cm/min is possible. The best effect is ob- tained in the combination with an inverter controlled pulsed power source.		
		Welding	Position	AWS/ASME F/1G HF/2F VD/3G			

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Туре		cal Composition of Weld Metal (%) Typical Mechanical Properties of Weld Mrtal								
С	Si	Mn	Р	s	Yield Point, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2V-notch 0°C, J		Type of Current
Shield Gas: $Ar+20\%CO_2$										
0.09	0.14	0.94	0.006	0.010	380	470	33	-20°C 130	140	DC (+)
				Shi	eld Gas: A	$r+20\%CO_2$				
0.07	0.61	1.21	0.008	0.005	460	570	30	-20 14	0°C 40	DC (+)
				Shi	eld Gas: A	r+20%CO ₂				
0.09	0.09	0.42	0.010	0.005	_	_	_	_		DC (+)

1

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Gas Tungsten Arc Welding of mild steel, 490MPa high tensile strength steel and aluminium-killed steel for low temperature service.

CHARACTERISTICS

YT-28 is filler rods and spool wire for GTAW (TIG welding). to be used with Ar shield gas.

The weld metal shows stable toughness at low temperature range down to -40° C. The weld bead shape is excellent since high fluidity of molten pool and high affinity between molten pool and base metal. It also suitable for uranami (sound penetration bead) welding.

The operability is good since the surface of the filler rod is smooth.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.09	0.77	1.47	0.013	0.011

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point,	Tensile Strength,	Elongation,	Charpy 2V-notch, J		PWHT
MPa	MPa	%	-40°C	−20°C	I WIII
464	579	32	120	163	As weld
429	510	32	—	162	620°C×1hr

■ SIZES<DC(-)>

Diameter (mm)	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)	1000	1000	1000	1000	1000
Weight of spool wire (kg)	12.5	—	—	—	—

Approval: NK, ABS Identification color: End-blue

570~950MPa High Tensile Strength Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

SF-60/SF-60A

For 590MPa High Tensile Strength Steel

APPLICATIONS

FCAW

2

All position welding for TS 590MPa class steel $\,$

CHARACTERISTICS

SF-60 and SF-60A are rutile type seamless flux cored arc welding wires to be used with $100\%CO_2$ (SF-60) and Ar+20%CO_2(SF-60A) shield gas and designed for bridges, machineries and structures welding. Weld metal shows excellent toughness in low temperature range at down to -5°C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Brand name	Shielding gas	С	Si	Mn	Р	S	Ni
SF-60	CO_2	0.05	0.50	1.47	0.011	0.005	0.53
SF-60A	$Ar+20\%CO_2$	0.05	0.36	1.35	0.009	0.005	0.41

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Brand	Shielding	Yield strength,	Tensile strength,	Elongation,	Charpy 2V-notch
name	gas	MPa	MPa	%	at −5°C, J
SF-60	CO_2	590	620	25	100
SF-60A	$Ar+20\%CO_2$	560	620	29	130

TYPICAL WELD JOINT TEST

Brand	Shielding	Walding	Heatingut	Joint tensile test		Charpy
	0	Welding position	kJ/cm	Tensile strength,	Fracture	2V-notch at
name	gas	position	KJ/CIII	MPa	Location	−5°C, J
SF-60	CO_2	V-up	24.0	610	WM	81
SF-60A	$Ar+20\%CO_2$	V-up	22.1	610	WM	130

*Base metal: SM570Q (30mm thick.)

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2
Current	F, H, H-Fil	180~300
A	V-up, OH	180~250

74

SF-70A

*AWS A5.36 E101T1-M21A4-K2-H4

For 690MPa High Tensile Strength Steel

APPLICATIONS

Welding of YP620 steel and 690MPa high tensile strength steel (WEL-TEN 690RE, 690 and 690C etc.) of down to -40°C for offshore structures, pressure vessels, tanks, penstocks, turbine casings, crane and construction machineries.

CHARACTERISTICS


SF-70A that is used with Ar+20%CO₂ shielding gas is rutile type seamless flux cored arc welding wire. Weld metal shows excellent toughness in low temperature range down to -40°C. Diffusible hydrogen content is as low as solid wires and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.

- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni			
0.06	0.44	1.75	0.012	0.004	1.88			

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength,	Tensile strength,	Elongation,	Charpy 2V-notch
MPa	MPa	%	at -40°C, J
730	765	23	88

TYPICAL WELD JOINT TEST

Base	metal	Welding position		Joint tensile test		Charpy
Type of Steel	Plate thickness	Welding position	Heat input, kJ/cm	Yield strength, MPa	Tensile strength, MPa	2V-notch at -40°C, J
HT780	38mm	Vertical-up	14.6	690	800	68

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)> (Shielding gas: Ar+20%CO2)

Diameter (mm)		1.2
Current	F, H, HF	180~300
A	VU, OH	180~250

SF-80AM

*AWS A5.36 E111T1-M21A2-K3-H4

For 780MPa High Tensile Strength Steel

APPLICATIONS

FCAW

2

Welding of YP690 steel and 780MPa high tensile strength steel (WEL-TEN 780RE, 780E and 780C etc.) of down to -20°C for bridges, pressure vessels, tanks, penstocks, turbine casings, crane and construction machineries.

CHARACTERISTICS

SF-80AM that is used with Ar+20%CO₂ shielding gas is rutile type seamless flux cored arc welding wire. Weld metal shows excellent toughness range down to -20° C. Diffusible hydrogen content is as low as solid wires and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance withwelding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1.

WELDING POSITION

AWS/ASME	/\ F/1G	HE/2E	H/2G		1) >
AVV5/ASIVIE	F/IG	HF/2F	H/2G	OH/4G	V0/3G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

-									
С	Si	Mn	Р	S	Ni	Mo			
0.06	0.44	1.64	0.013	0.004	2.14	0.30			
TYPICAL MECHANICAL PROPERTIES OF WELD METAL									
Yield strength,		Tensile Stren	igth, E	Elongation,		Charpy 2V-notch			
MPa		MPa		%	at -	at –20°C, J			
819		848		20		73			

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diamet	1.2					
Current	F, H-Fil	180~300				
А	VU, OH	$180 \sim 250$				

SM-80A

*AWS A5.36 E110T15-M21A4-G-H4

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of 780MPa high tensile strength steel for frames, bridges, pressure vessels, penstocks and offshore structures.

CHARACTERISTICS

SM-80A is a metal type seamless flux cored arc welding wire to be used with $Ar+20\%CO_2$ shield gas. Arc is stable, spatters and slags are few and weldability is excellent in a wide current range. Bead appearance is beautiful and weld metal shows excellent toughness at low temperatures. Diffusible hydrogen content is as low as solid wires and crack resistance is excellent.

GUIDELINES FOR USAGE

- 1. Arc voltage should be 1 or 2 volt lower than that for conventinal flux cored wires and 4 or 5 volt lower than that for solid wires.
- 2. All dust and rust in groove should be completely removed.
- 3. Preheating at 100~150°C is required in accordance with plate thickness, restraint, heat input, etc.
- 4. A suitable shield gas flow rate is 20-25L/min.
- 5. Distance between base metal and tip should be kept within 20-30mm.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni	Cr	Mo	Other
Ar+20%CO ₂	0.05	0.37	1.38	0.013	0.005	2.51	0.48	0.42	-

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

0.2% Yield strength, Tensile Strength, MPa MPa		Elongation, %	Charpy 2V-notch at -40°C, J
761	821	22	91

■ TYPICAL WELD JOINT TEST

Joint Tensile Test		Charpy 2V-notch			Plate Thickness	
Tensile Strength	Location of	J		Base metal		
MPa	Fracture	−60°C	−40°C		mm	
824	Base Metal	64	88	WELTEN 780E	20	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diamet	1.2	
Current	F, H	180~300
А	H-Fil	180~300

Approval: ABS, DNV (During the proceedings)

SMAW

2

78

For 590MPa High Tensile Strength Steel

APPLICATIONS

Welding of SM570, SPV450 and 590MPa high tensile strength steel (WEL-TEN 590) for penstocks, storage tanks, pressure vessels, bridges, offshore structures and machinery.

CHARACTERISTICS

L-60 is an extra low hydrogen type electrode with high resistance to moisture absorption. Weldability in all positions, mechanical properties and X-ray quality are excellent. Weld metal shows satisfactory crack resistance due to its extremely low diffusible hydrogen content.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- Preheating in accordance with the type of steel, plate thickness, restraint, etc.,
 i. e. at 50~100°C for a 35mm thick plate, is necessary to prevent cracks.
- 3. Welding with excessively high heat input, i.e. more than 55 kJ/cm for a 35mm thick plate, should be avoided to assure strength and toughness of weld.

WELDING POSITION

	PF H/2G	OH/4G	€ >
--	---------	-------	------------

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Mo
0.07	0.42	1.12	0.73	0.22

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J
540	640	27	170

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	r (mm)	3.2	4.0	5.0	6.0
Length (1	mm)	350	400	400	450
Current	F, H-Fil	70~140	120~190	$190 \sim 250$	$250 \sim 310$
Α	V-up, OH	60~130	90~170	140~190	—

Approval: NK, ABS, LR, DNV, BV

Identification color: End-orange, secondary-yellow

L-60W

JIS Z 3211 E5916-N1M1 *A5.5 E8016-G

For uranami welding in all positions of 590MPa High Tensile Strength Steel

APPLICATIONS

Uranami (sound penetration bead) welding of 590MPa high tensile strength steel pipes for ships, pressure vessels and pipelines.

CHARACTERISTICS

L-60W is a low hydrogen type electrode for uranami welding in all positions. In low current range in root pass welding of pipes, a sound penetration bead without blowholes is obtained due to stable arc, strong arc force. And excellent slag fluidity and coverage.

GUIDELINES FOR USAGE

- 1. DC(-) should be used for uranami welding. However AC or DC(+) have to be used on AWS.
- 2. 3.2mm diameter electrode is recommended for all position welding of pipes with 6-15mm wall thickness.
- 3. Electrodes should be redried at 300-350°C for 60 minutes before use.
- 4. Arc should be started on a small plate or the side of the groove and cut after moving crater to the side of the groove
- 5. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Cu	Ni	Mo
0.07	0.60	1.14	0.012	0.004	0.02	0.64	0.12

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J
577	657	26	116

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(±)>

Diameter	(mm)	2.6	3.2	4.0
Length (mm)		350	400	400
	F	$50 \sim 100$	70~130	$100 \sim 150$
Current	OH	40~80	60~130	$90 \sim 150$
А	VU	40~80	60~130	$90 \sim 150$
	Uranami welding	40~80	60~110	80~140

Approval: -

Indentification color: End-Pink, secondary-Brown

APPLICATIONS

SMAW

2

Welding of SPV490 and 590MPa high tensile strength steel (WEL-TEN 610) for penstocks, storage tanks, pressure vessels, bridges, offshore structures and machinery.

CHARACTERISTICS

L-62CF is an extra low hydrogen type electrode for all position welding of 590MPa high tensile strength steel. It is suitable for site welding of storage tanks since its coating flux is highly resistant to moisture absorption even in an atmosphere of high temperature humidity. Extremely low diffusible hydrogen content in weld metal assures excellent crack resistance.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating in accordance with the type of steel, plate thickness, restraint, etc., i.e. at 50~100°C for a 35mm thick plate, is necessary to prevent cracks.
- 3. Welding with excessively high heat input, i.e. more than 55 kJ/cm for a 35mm thick plate, should be avoided to assure strength and toughness of weld.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Mo
0.07	0.45	1.36	0.70	0.35

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength,	Tensile Strength,	Elongation,	Charpy 2V-notch
MPa	MPa	%	at -20°C, J
590	660	28	170 at 20 0, 9

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		3.2	4.0	5.0	
Length (mm)		350	400	400	
Current	F, H-Fil	100~140	140~190	$190 \sim 250$	
А	V-up, OH	90~130	120~170	140~190	

Approval: NK

80

Identification color: End-Golden blown, secondary-Green

L-60LT

JIS Z 3211 E6216-G *AWS A5.5 E9016-G

For 590MPa High Tensile Strength Steel

APPLICATIONS

Welding of 590MPa high tensile strength steel (N-TUF490) for low temperature service for structures to be used in frigid area, pressure vessels, storage tanks and offshore structures.

CHARACTERISTICS

L-60LT is an extra low hydrogen type electrode for all positions with high resistance to moisture absorption. Weld metal shows excellent toughness at temperatures around -50° C and CTOD (crack tip opening displacement) value.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use,
- 2. Preheating in accordance with the type of steel, plate thickness, restraint, etc., i.e. at $50\sim100^{\circ}$ C for a 35mm thick plate, is necessary to prevent cracks.
- 3. Select the optimum heat input in accordance with the required specification of structures and plate thickness to assure desired toughness and CTOD value. Arc length should be kept as short as possible during welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Mo	Ti	В
0.07	0.41	1.51	0.67	0.18	0.03	0.002

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength,	Tensile Strength,	Elongation,	Charpy 2V-notch
MPa	MPa	%	at −50°C, J
600	680	26	180

■ TYPICAL CTOD VALUES OF WELD JOINT (AS WELDED)

Base Metal (Thickness)	Groove	Welding Conditions	CTOD Value, (mm) -10°C		(mm)
A537C1.2 Mod (25mm)	Y	Diameter: 4.0mm Position:V-up Heat Input: 32kJ/cm	1.17	1.11	1.26

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		3.2	4.0	5.0
Length (mm)		350	400	400
Current	F, H-Fil	100~140	140~190	$190 \sim 250$
А	V-up, OH	90~130	120~170	140~190

Approval: ABS, DNV

Identification color: End-silver, secondary-brown

SMAW

2

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of 780MPa high tensile strength steel (WEL-TEN 780, 780C, 780P and 780E) for penstocks, pressure vessels, bridges, machinery and turbine casings.

CHARACTERISTICS

L-80 is an extra low hydrogen type electrode with high resistance to moisture absorption. Weldability in all positions, mechanical properties and X-ray quality are excellent. Extremely low diffusible hydrogen content in weld metal assures satisfactory crack resistance.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating in accordance with the type of steel, plate thickness, restraint, etc., i.e. at $120 \sim 180^{\circ}$ C for a 35mm thick plate is necessary to prevent cracks.
- 3. Welding with excessively high heat input, i.e. more than 45 kJ/cm for a 35mm thick plate, should be avoided to assure strength and toughness of weld.

WELDING POSITION

AW5/ASME F/1G H/2F H/2G OH/4G VU/3

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Cr	Mo
0.05	0.44	1.35	2.52	0.18	0.54

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J
740	830	22	96

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	r (mm)	3.2	4.0	5.0	6.0
Length (1	nm)	350	400	400	400
Current	F, H-Fil	100~140	140~190	$190 \sim 250$	$250 \sim 310$
Α	V-up, OH	90~130	120~170	140~190	—

Approval: NK, ABS

82

Identification color: End-orange, secondary-purple

L-80SN

JIS Z 3211 E7816-N9M3U *AWS A5.5 E11016-G

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of 780MPa high tensile strength steel (WEL-TEN 780) for offshore structures, pressure vessels, storage tanks and structures to be used in frigid area.

CHARACTERISTICS

L-80SN is a ultra low hydrogen type electrode with high resistance to moisture absorption. Weld metal shows excellent toughness at around -80° C. It can be used with confidence for welding extremely thick plates such as racks of offshore structures since extremely low diffusible hydrogen content in weld metal assures satisfactory crack resistance.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at $350{\sim}400{\circ}$ C for 60 minutes before use, kept at $100{\sim}150{\circ}$ C and taken out only as needed.
- 2. Preheating in accordance with the type of steel, plate thickness, restraint, etc., i.e. at 100~150°C for a 35mm thick plate, is necessary to prevent cracks.
- 3. Welding with excessively high heat input, i.e. more than 40 kJ/cm for a 35 mm thick plate, should be avoided to assure strength and toughness of weld.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Мо	Diffusible Hydrogen (Gas Chromatography) ml /100g
0.05	0.36	1.39	4.64	0.48	1.6

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -80°C, J
760	860	20	90

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	(mm)	3.2	4.0	5.0
Length (n	nm)	350	400	400
Current	F, H-Fil	100~140	140~190	$190 \sim 250$
А	V-up, OH	90~130	120~170	140~190

Approval: ABS, LR, DNV

Identification color: End-pink, secondary-green

Covered Arc Welding Electrodes for 590~980MPa High Tensile Strength Steel

Brand		ìcation lor	Specifi	ication	Dia.	Application and Observatoriation
Name	End	Secon- dary	JIS	AWS	mm	Application and Characteristics
L-60S	Orange	Light blue	Z 3211 E5716-G	☆ A5.5 E8016-G	3.2 4.0 5.0 6.0	Extra low hydrogen type electrode with high resistance to moisture absorption. It assures satisfactory toughness at '45°C, weldability in all positions and X-ray quality. Crack resistance is excellent due to the extremely low diffusible hydrogen content in weld metal.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
L-62	Pink	White	Z 3211 E6216-G	☆ A5.5 E9016-G	3.2 4.0 5.0 6.0	Extra low hydrogen type electrode with high resistance to moisture absorption. Weldability in all positions, mechanical properties and Xray quality are excellent. Extremely low diffusible hydrogen content in weld metal assures satisfac- tory crack resistance.
	Welding	Position	AWS/ASME F/1G		HF/2F	H/2G OH/4G VU/3G
L-74S	Orange	Red	Z 3211 E6916-G	☆ A5.5 E10016•G	3.2 4.0 5.0	Extra low hydrogen type electrode with high resistance to moisture absorption and suitable for all position welding of 685MPa. Weldability and X-ray properties are excellent and extremely low diffusible hydrogen content of weld metal assures excellent crack resistance and mechanical proper- ties.
	Welding	Position	AWS/ASME F/1G		HF/2F	H/2G OH/4G VU/3G
L-80EL	Red	Pink	Z 3211 E7816- N5CM3U	☆ A5.5 E11016-G	4.0 5.0	Ultra low hydrogen type electrode with high resis- tance to moisture absorption. It is suitable for weld- ing under severe conditions such as site welding of penstocks and tanks since extremely low diffusible hydrogen content in weld metal assures excellent crack resistance.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
L-100EL	Orange	Orange	_	_	4.0 5.0	Ultra low hydrogen type electrode with high resistance to moisture absorption and suitable for all position welding of 950MPa high tensile strength steel. Weldability and X-ray properties are excellent and extremely low diffusible hydro- gen content of weld metal assures excellent crack resistance and mechanical properties.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

T	ypical (of	Chemic Weld I	cal Con Metal (npositi %)	on	Ту	pical Mechanical of Weld Me		ies	Diffusible Hydrogen (Gas
С	Si	Mn	Ni	Cr	Mo	Yield strength, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2V-notch, J , 0°C	Chromatog- raphy) mℓ/100g
0.05	0.46	1.12	1.51	_	0.20	580	650	27	-45°C 120	-
0.07	0.48	1.39	0.76	_	0.35	600	670	29	−20°C 170	-
0.05	0.37	1.01	3.28	0.23	0.34	780	840	22	-29°C 100	_
0.06	0.45	1.44	2.44	0.20	0.42	740	820	22	-20°C 120	1.4
0.06	0.25	1.67	2.01	0.89	0.75	910	990	19	−25°C 70	1.7

2

SMAW

NF-820 × Y-DM

*JIS Z 3183 S582-H *AWS A5.23 F8A0-EA3-A3

For 590MPa High Tensile Strength Steel

APPLICATIONS

2

Fillet welding of 590MPa high tensile strength steel for steel frames, bridges, pressure vessels and storage tanks.

CHARACTERISTICS

Bead appearance and slag removal are excellent in flat and horizontal fillet welding with single or double electrodes. NF-820 is a pumiceous flux and is economical due to its low consumption rate.

GUIDELINES FOR USAGE

Care should be taken to keep the flux from absorbing moisture.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Mo	Base Metal	Plate Thickness mm	Welding Method
0.05	0.67	1.86	0.014	0.012	0.51	WT590	25	Multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

,	Tensile Test	Charpy 2	l V-notch, J	Base	Plate	Wolding	
Yield strength, MPa	Tensile Strength, MPa	Elonga- tion, %	-20°C	20°C –5°C		Thickness mm	Welding Method
600	670	26	58	65	WT590	25	Multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

	Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
-		(L)4.8	~ ~		800	27		
	19	(T)4.8	Y	1st & 2nd	750	28	60	one pass both sides

Approval:

Approval: LR. DNV

NB-60L × Y-DM3

*AWS A5.23 F8A8-EG-G F8P8-EG-G

For 590MPa High Tensile Strength Steel

APPLICATIONS

Multi-layer butt welding of aluminium-killed steel for low temperature service for offshore structures, installations for low temperatures service and structures to be used in frigid areas.

CHARACTERISTICS

NB-60L is a Ti-B type bonded flux and assures excellent low temperature toughness and CTOD both as welded and after stress relief annealing.

GUIDELINES FOR USAGE

- 1. Satisfactory weldability and weld metal properties are obtained with heat input of less than 50kJ/cm.
- 2. Flux should be used as fast as possible after taking out of the can. Flux should be redried at 250~350°C for 60 minutes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Mo	Base Metal	Plate Thickness mm	Welding Method
0.08	0.18	1.54	0.010	0.005	0.18	YP420	25	X groove, multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

1	Fensile Test		Charpy 2 V-notch,			Plate	
Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	-60°C	PWHT	Base Metal	Thick- ness mm	Welding Method
560	640	32	140	As-welded	YP420	25	X groove,
500	610	30	180	600°C×1.5hr		20	multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
75	4.8	75 70° 38 5 5 32	$\begin{array}{c c}1\\2{\sim}13\\14\\15{\sim}29\end{array}$		27 32 28 32	30 30 30 30	Multi-layer, with back gouging
25	4.8		1~11	700	30	30	Multi-layer

YF-15B × Y-DM

*JIS 7 3183 S624-H4 *AWS A5.23 F9A6-EA3-A3 F8P2-EA3-A3

For 590MPa High Tensile Strength Steel

APPLICATIONS

2

Single and multi-layer welding of 590MPa high tensile strength steel for ships, steel frames, bridges and pressure vessels.

CHARACTERISTICS

Weld metal shows excellent impact values and sufficient strength and toughness as welded and after stress relieving annealing.

GUIDELINES FOR USAGE

An excessive amount of flux in high current welding may cause uneven bead ripples.

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Mo	Base Metal	Plate Thickness mm	Welding Method
0.09	0.38	1.33	0.014	0.011	0.49	WT590	25	Multi-layer

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Tensile Test		Charpy 2	2 V-notch, J	D	Plate	W7 11.
Yield strength, MPa	Tensile Strength, MPa	Elonga- tion, %	-40°C	0°C	Base Metal	Thickness mm	Welding Method
540	630	25	41	69	WT590	25	Multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
25	4.0		1~14	550	30	41	Multi-layer

88

NB-250H × **Y-204B** *AWS A5.23 F9A8-EG-G

F9P8-EG-G

For 590MPa Low Temperature Service

APPLICATIONS

Flat butt welding of 590MPa high tensile strength steel for low temperature service for offshore structures and structures to be used in frigid areas.

CHARACTERISTICS

NB-250H is a high basic type bonded flux and assures excellent low temperature toughness (impact and CTOD properties) both as welded and after stress relieving annealing. Slag is easy to remove even in narrow grooves.

GUIDELINES FOR USAGE

- 1. Satisfactory weldability and mechanical properties are obtained with heat input of less than 45kJ/cm.
- 2. Flux should be used as fast as possible after taking out of the can. Damp flux should be redried at $250 \sim 350^{\circ}$ C for 60 minutes.

WELDING POSITION

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Ni	Mo	Base Metal	Plate Thickness mm	Welding Method
0.10	0.20	1.71	0.011	0.003	0.74	0.29	HT590	50	X groove, multi-layer

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Te	nsile Test	Charpy 2 V-notch, J		CTOD mm			Plate		
Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	−60°C	-40°C	−10°C	PWHT	Base Metal	Thickness	Welding Method
610	710	29	150	170	2.06	As- welded	HT590	50	X groove, multi-layer
590	680	30	110	140	2.99	605°C ×2.5hr	HT590	50	X groove, multi-layer

TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
50	4.8	50 50 60 ¹⁻⁷ 25 5 25 5 8-15	$ \begin{array}{r} 1 \\ 2~7 \\ 8 \\ 9~15 \end{array} $	600 650 600 650	28 30 28 30	30 28 30 28	Multi-layer with gouging

NB-250H × Y-80M

*JIS Z 3183 S804-H4 *AWS A5.23 F11A10-EG-M3

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of 780 MPa high tensile strength steel for offshore structures, pressure vessels, penstocks and bridges.

CHARACTERISTICS

NB-250H is a bonded flux designed to minimize the diffusible hydrogen content in weld metal and, therefore, crack resistance is extremely high. Impact properties are excellent at low temperature and slag is easy to remove even in narrow grooves.

GUIDELINES FOR USAGE

- 1. Flux should be redried at $250 \sim 350$ °C for $60 \sim 120$ minutes before use.
- 2. When flux is reused, care should be taken that alien things such as rust are not mixed in with the flux.
- 3. Preheating at 100~150°C is required.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Cr	Mo	Base Metal	Plate Thickness mm	Welding Method
0.07	0.19	1.41	2.18	0.56	0.52	WT780	25	Multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Joint	Joint Tensile Test			V-notch, J	Base	Plate	Heat	Welding
Yield strength, MPa	Tensile Strength, MPa	Elong- ation, %	-60°C	-60°C -40°C		Thickness mm	Input kJ/cm	Method
730	830	29	86	120	WT780	25	31	Multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
25	4.0		1~9	550	31	30	Multi-layer

90

NB-250J × Y-80J

*JIS Z 3183 S804-H4 *AWS A5.23 F11A10-EG-G

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of 780MPa high tensile strength steel for offshore structures, pressure vessels, penstocks and bridges.

CHARACTERISTICS

NB-250J is a bonded flux designed to minimize the diffusible hydrogen content in weld metal and, therefore, crack resistance is extremely high. Impact properties are excellent at low temperature and slag is easy to remove even in narrow grooves.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 250~350°C for 60~120 minutes before use.
- 2. When flux is reused, care should be taken that alien things such as rust are not mixed in with the flux.
- 3. Preheating at 100~150°C is required.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Cr	Mo	Base Metal	Plate Thickness mm	Welding Method
0.0	8 0.20	1.43	2.17	0.56	0.52	WT780	25	Multi-layer

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Joint	Joint Tensile Test		Charpy 2	2 V-notch, J		Plate	Heat	XX7 1 1·
Yield strength, MPa	Tensile Strength, MPa	Elong- ation, %	-60°C	-40°C	Base Metal	Thickness mm	Input kJ/cm	Welding Method
759	859	24	64	103	WT780	25	34	Multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
25	4.0		1~8	600	28	30	Multi-layer

Approval: ABS, DNV, CCS

NB-80 × Y-80

For 780MPa High Tensile Strength Steel

APPLICATIONS

SAW

2

Welding of 780MPa high tensile strength steel for offshore structures, pressure vessels, penstocks and bridges.

Welding of 3Ni-1.75%Cr-0.5%Mo steel such as ASTM A508 Gr.4N and A543 type B Cl.1 steel.

CHARACTERISTICS

NB-80 is a bonded flux designed to minimize the diffusible hydrogen content in weld metal and, therefore, crack resistance is extremely high. Impact properties are excellent at low temperature and slag is easy to remove even in narrow grooves.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 300~350°C for 60~120 minutes before use.
- 2. When flux is reused, care should be taken that alien things such as rust are not mixed in with the flux.
- 3. Preheating at 100~150°C is required.

WELDING POSITION

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Cr	Mo	Base Metal	Plate Thickness mm	Welding Method
0.07	0.20	1.62	2.13	0.94	0.45	WT780	25	Multi-layer

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Joint Tensile Test			Charpy 2 V-notch, J			Base	Plate Thick-	Heat	Wolding		
Yield strength, MPa	Tensile Strength, MPa	Elon- gation, %	−40°C	−20°C	-29°C	0°C	Metal	ness mm	Input kJ/cm	Welding Method	PWHT
790	890	21	87	110	_	130	HT780	25	31	Multi- layer	As- welded
690	800	24	-	_	103	145	A508Gr.411	25	28	Multi- layer	585°C ×20h

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS


Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
25	4.0		1~9	550	31	30	Multi-layer

Approval:

Submerged Arc Welding Materials for 590~780MPa High Tensile Strength Steel

Brand	Spe	cification		Typical Chemical of Weld				
Name	JIS	AWS	Application and Characteristics		Si	Mn	Р	s
NF-250 × Y-204B	_	☆ A5.23 F9A6-EG-G F8P6-EG-G	Narrow gap welding of 590MPa low temperature service steel for nuclear reactor pressure ves- sels and structures to be used in frigid areas. Slag is extremely easy to remove and weld metal shows excellent impact value.	0.07	0.14	1.60	0.010	0.004
	Weldi	ng Position	AWS/ASME F/1G					

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Composition Metal (%)			Typical Mechanical Properties of Weld Metal					Remarks			
Ni	Cr	Mo	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Charp	y 2 V-notch, J	PWHT	Base Metal	Plate Thick- ness mm	Welding Method	
0.04		- 0.38	_	660	28	-50	91	As welded	CDV400	40	Single, one pass one layer multi-layer	
0.94).94 —		_	640	29	-50	64	625°C× 1hr	SPV490			

SAW

YM-60C

JIS Z 3312 G59JA1UC3M1T

*AWS A5.28 ER80S-G

For 590MPa High Tensile Strength Steel

APPLICATIONS

GMAW

2

Welding of $590\mathrm{MPa}$ high tensile strength steel for steel frames, bridges, pressure vessels and penstocks.

CHARACTERISTICS

YM-60C is a gas metal arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and weldability is excellent even in high welding current range. High efficiency is obtained in automatic and semi-automatic welding due to high deposition rate and deep penetration. It is also applicable to OSCON process, our manpower saving automatic welding process.

GUIDELINES FOR USAGE

1. Preheating at $50{\sim}150{}^{\circ}\mathrm{C}$ is required in accordance with plate thickness, restraint, heat input, etc.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield C	las	С	Si	Mn	Р	S	Mo
CO_2		0.07	0.38	1.38	0.011	0.012	0.35

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J		
IVIT a	Mra	70	−20°C	−5°C	
590	660	28	110	120	

■ TYPICAL WELD JOINT TEST

Joint Ter	nsile Test	Charpy 2	2V-notch, J		Plate	Welding Method	
Tensile Strength, MPa	Location of Fracture	-20°C	−5°C	Base metal	Thickness mm		
640	Base metal	60	80	590MPa high tensile strength steel	25	X groove, 3 passes both sides	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diamet	er (mm)	1.2	1.4	1.6
Current (A)	F, H-Fil	80~350	$150 \sim 450$	$250 \sim 550$
Current (A)	Н	100~300	$150 \sim 350$	-

96

YM-60A

JIS Z 3312 G59JA1UM3M1T *AWS A5.28 ER80S-G

For 590MPa High Tensile Strength Steel

APPLICATIONS

Welding of 590MPa high tensile strength steel for steel frames, bridges, pressure vessels, storage tanks and penstocks.

CHARACTERISTICS

YM-60A is a gas metal arc welding wire to be used with Ar+5~25%CO₂ or Ar+2~5%O₂ shield gas. It is suitable for spray arc welding with high current and vertical butt welding with low current and high heat input. Weld metal shows excellent mechanical properties and crack resistance. Weldability is satisfactory and bead appearance is beautiful when it is used for OSCON Process, our manpower saving automatic welding process.

GUIDELINES FOR USAGE

1. Preheating at $50 \sim 150^{\circ}$ C is required in accordance with plate thickness, restraint, heat input, etc.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Mo
$Ar+20\%CO_2$	0.06	0.35	1.45	0.008	0.003	0.38

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2	V-notch, J	PWHT
MPa	MPa	%	-30°C	$-5^{\circ}C$	r wni
580	650	28	180	200	As welded
560	630	28	-40°C: 100	-0°C: 210	620°C×3hr
530	600	30	-40°C: 190	-0°C: 230	620°C×15hr

TYPICAL WELD JOINT TEST

	Joint Tensile Test Tensile Location of		2V-notch,	weld-	Base metal	Plate Thick-	PWHT	
Strength, MPa	Location of Fracture	-30°C	-10°C	ing Position	base metai	ness mm	F WIII	
660	Base Metal	150	190	F	590MPa high tensile	25	A	
670	Base Metal	140	180	V	strength steel	20	As welded	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diamet	er (mm)	1.2	1.4	1.6
Current (A)	F	80~350	$150 \sim 450$	200~550
	H-Fil	80~350	150~400	200~450

Approval: NK, ABS, DNV

YM-80C

JIS Z 3312 G78A2UCN5M3T *AWS A5.28 ER110S-G

For 780MPa High Tensile Strength Steel

APPLICATIONS

2

Welding of 780MPa high tensile strength steel for steel frames, bridges, pressure vessels and penstocks.

CHARACTERISTICS

YM-80C is a gas metal arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and weldability is satisfactory even in high welding current range. Bead appearance is beautiful and weld metal shows excellent toughness.

GUIDELINES FOR USAGE

1. Preheating at 120~180°C is required in accordance with plate thickness, restraint. heat input etc.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield (Gas	С	Si	Mn	Р	S	Ni	Mo
$\rm CO_2$		0.07	0.60	1.34	0.005	0.009	2.28	0.42

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J		
мга	wir a	70	−20°C	−0°C	
720	720 850		70	80	

■ TYPICAL WELD JOINT TEST

Joint Te	nsile Test	Charpy 2	2V-notch, J		Plate Thick- ness mm		
Tensile Strength, MPa	Location of Fracture	−15°C	0°C	Base metal		Welding Method	PWHT
830	Base metal	70	80	WT780	48	v	As Weldes
840	Base metal	60	60	W1780	48	X groove	625°Cx1hr

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter	(mm)	0.9	1.0	1.2	1.4	1.6
Current (A)	F, H-Fil	$60 \sim 200$	$70 \sim 250$	$80 \sim 350$	$150{\sim}450$	$250 \sim 550$

Approval: NK

98

YM-80A

*AWS A5.28 ER110S-G

For 780 MPa High Tensile Strength Steel

APPLICATIONS

Welding with Ar+CO₂ mixture gas for 780 MPa high tensile strength for steel frames, bridges, penstoch, offshore

CHARACTERISTICS

YM-80A is a gas metal arc welding wire to be used with $Ar+10\sim25\%$ CO₂ mixtures.

This wire is available to low temperature operation up to $-40^{\circ}\mathrm{C}$ under both as welded and PWHT conditions.

It can be used with confidence for welding extremely thick plates such as Rack & Chord in offshore structures

since extremely low diffusible hydrogen content in deposited metal assures satisfactory crack resistance.

GUIDELINES FOR USAGE

- 1. Preheating is necessary according to plate thickness and its chemical composition and so on.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and pits.
- 3. In case PWHT is carried out, recommended holding temperature for PWHT is approximately 580°C.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni	Cr	Mo
Ar+20%CO ₂	0.07	0.28	1.36	0.006	0.003	2.87	0.47	0.29

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Shielding	Welding	Heat input	Yield Strength,	Tensile Strength,	Elon- gation,	Cha 2V-no		PWHT
gas posi	position	kJ/cm	MPa	MPa	%	-40°C	−29°C	
	F/1G	25	760	870	22	72	_	As welded
Ar+20%CO2	VU/ 3G	40	700	890	22	74	110	As welded
AF#20%0002	F/1G	20	760	830	25	67	—	580°C×8hrs.
	F/1G		740	810	25	100	—	600°C×8hrs.

■ SIZES & RECOMMENDED CURRENT <DC(+)>

Diar	neter (mm)	1.2	1.4	1.6
Current	F/1G, HF/2F	$70 \sim 250$	$200 \sim 350$	$300 \sim 500$
Range	H/2G, VU/3G	$70 \sim 150$	$100 \sim 250$	-
(A)	OH/4G, VD/3G	$70 \sim 150$	100~200	-

Approval: NK, ABS, DNV

Gas Metal Arc Welding Wires for 590~980MPa High Tensile Strength Steel

	<u>ar 11</u>	Specificati	on	D.			
Brand Name	Shield Gas	JIS	AWS	Dia. mm	Application and Characteristics		
YM-70CS	CO_2	Z 3312 G69A2UCN1M2T	☆ A5.28 ER100S-G	1.2 1.4 1.6	Welding of 690MPa high strength steel for civil construction equipment, steel frames, bridge and pressure vessels.		
	Wel	ding Position	AWS/ASME	AWS/ASME F/1G HF/2F			
YM-70C	CO ₂	Z 3312 G69A2UCN4M3T	☆ A5.28 ER100S-G	0.9 1.0 1.2 1.6	Welding of 690MPa high tensile strength steel. Good weldability with stable arc and few spatters and excellent toughness are as- sured even in high current welding.		
	Wel	ding Position	AWS/ASME	AWS/ASME F/1G HF/2F			
YM-70A*	Ar + 20% CO ₂	Z 3312 G69A3UMN4M3T	☆ A5.28 ER100S-G	0.9 1.2 1.6	Welding of 690MPa high tensile strength steel. Arc is stable, spatters are extremely few, and beautiful bead appearance and excellent toughness are obtained in a wide current range with Ar+20%CO ₂ or Ar+O ₂ mixture gas.		
	Wel	ding Position	AWS/ASME	F/10	G HF/2F		

Note : *Mechanical properties are with Ar+CO₂ mixture gas. Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typic	cal Che	mical (Compos (%)	ition of	Weld I	/letal	Typical 1	Mechanical Met		s of Weld		Type of			
	С	Si	Mn	Р	s	Ni	Mo	Yield strength, MPa	Tensile Strength, MPa	Elon- gation, %	Charpy 2V-notch at 0°C, J	PWHT	Cur- rent			
	0.08	0.53	1.58	0.010	0.008	0.52	0.34	650	740	22	-5°C 90		DC (+)			
	0.08	0.53	1.58	0.010	0.008	0.02	0.02	0.04 000	0.02	690			-20°C 80	_	DC (+)	
-							0.30				130		DC			
	0.06	0.49	1.02 0.009	1.02	0.009	0.006	1.23 0.30	0 1.20	5 0.50 010 720 25	.30 610 720	610 720 25	23	720 23	-20°C 100	_	(+)
	0.06	0.47	1.32	0.010	0.005	1.92	0.44	660	740	23	-20°C 130		DC			
	0.06	0.47	1.32	0.010	0.005	1.92	0.44	000	740	23	-40°C 90		(+)			

GMAW

YT-60

*JIS Z 3316 W59AP2U34M3 *AWS A5.28 ER80S-G

For Mild Steel and 590MPa High Tensile Strength Steel

APPLICATIONS

GTAW

2

Gas Tungsten Arc Welding of mild steel, 590MPa high tensile strength steel plates. It is also suitable for uranami (Sound penetration bead) welding with back shielding.

CHARACTERISTICS

YT-60 is filler rods and spool wire for GTAW (TIG welding). to be used with Ar shield gas.

The weld metal shows stable toughness at low temperature range down to -40° C. The weld bead shape is excellent since high fluidity of molten pool and high affinity between molten pool and base metal. It also suitable for uranami (sound penetration bead) welding.

The operability is good since the surface of the filler rod is smooth.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Mo
0.09	0.70	1.89	—	0.35

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point,	Tensile	Elongation,	Charpy 2V-notch, J	PWHT
MPa	Strength, MPa	%	-40°C	гипі
655	700	27	120	As weld
580	630	31	300	620°C×1hr

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)	1000	1000	1000	1000	1000
Weight of spool wire (kg)	12.5, 20	12.5	—	—	—

102

YT-70

*JIS Z 3316 W69AP2UN4M3T *AWS A5.28 ER100S-G

For 690MPa High Tensile Strength Steel

APPLICATIONS

Gas Tungsten Arc Welding of 690MPa and 100ksi high tensile strength steel for offshore structures, pressure vessels, tanks, penstocks, turbine casings, crane and construction machineries. It is also suitable for uranami (Sound penetration bead) welding with back shielding.

CHARACTERISTICS

YT-70 is filler rods and spool wire for GTAW (TIG welding) to be used with Ar shield gas.

The weld metal shows stable toughness at low temperature range down to -20° C. The weld bead shape is excellent since high fluidity of molten pool and high affinity between molten pool and base metal. It also suitable for uranami (sound penetration bead) welding.

The operability is good since the surface of the filler rod is smooth.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. Preheating at 120~180°C is required in accordance with plate thickness, restraint and heat input etc.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

AWS/ASME

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Mo
0.09	0.45	1.43	1.80	0.43

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point,	Tensile	Elongation,	Charpy 2V-notch, J	PWHT	
MPa	Strength, MPa	%	-20°C	PWHI	
713	792	25	283	As weld	
695	755	28	265	610°C×1hr	

■ SIZES<AC or DC(-)>

Diameter (mm)	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)	1000	1000	1000	1000	1000
Weight of spool wire (kg)	12.5, 20	—	—	—	—

Identification color: End-pink

For 780MPa High Tensile Strength Steel

APPLICATIONS

Gas Tungsten Arc Welding of 780MPa and 110ksi high tensile strength steel (WEL-TEN 780, 780C and 780E etc.) of down to -20°C for offshore structures, pressure vessels, tanks, penstocks, turbine casings, crane and construction machineries. It is also suitable for uranami (Sound penetration bead) welding with back shielding.

CHARACTERISTICS

YT-80A is filler rods and spool wire for GTAW (TIG welding) to be used with Ar shield gas.

The weld metal shows stable toughness at low temperature range down to -20° C. The weld bead shape is excellent since high fluidity of molten pool and high affinity between molten pool and base metal. It also suitable for uranami (sound penetration bead) welding. The operability is good since the surface of the filler rod is smooth.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. Preheating at 120~180°C is required in accordance with plate thickness, restraint and heat input etc.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Mo	Cr
0.06	0.43	1.49	2.80	0.59	0.51

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point,	Tensile	ile Elongation, Charpy 2		PWHT	
MPa	MPa Strength, MPa		-20°C		
760	840	28	98	As weld	

■ SIZES<AC or DC(+)>

Diameter (mm)	1.2	1.6	2.0	2.4
Length of Filler Rod (mm)	1000	1000	1000	1000
Weight of spool wire (kg)	12.5, 20	—	—	—

Low Temperature Service Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

SF-36F

JIS Z 3313 T496T1-0CA-N1-H5 *AWS A5.36 E70T1-C1A8-K6

For Low Temperature Service Steel

APPLICATIONS

FCAW

3

106

Flat and horizontal fillet welding of low-temperature steels to be used for marine structures, shipbuildings, LPG vessels, and others.

CHARACTERISTICS

SF-36F is a rutile-based seamless flux cored wire dedicated to flat fillet welding and horizontal fillet welding that enables stable toughness to be obtained over a low-temperature range down to around -60° C. It gives excellent porosity resistance in the fillet welding of inorganic zinc primer coated steel plates.

GUIDELINES FOR USAGE

- 1. It is appropriate to hold the torch for horizontal fillet welding at an angle of 40 $^\circ$ 50° to the lower plate and with an advance angle of about 5 $^\circ$ 20°.
- 2. Depending on the type or film pressure of the primer, good porosity resistance may not be obtained, and therefore it is required that the type and film pressure of the primer should be managed.
- 3. For more information, refer to the essential points of welding operations 1 3 (page 20) with the SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL(%)<Shield Gas:CO₂>

С	Si	Mn	Р	S	Ni
0.05	0.48	1.33	0.016	0.006	0.52

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch,
MPa	MPa	%	(-60°C) J
550	580	27	68

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4	1.6	
Current	H-Fil	180~320	200~380	220~430	
А	F-Fil	$180 \sim 320$	200~380	220~430	

SF-36E

JIS Z 3313 T496T1-1CA-N3-H5 *AWS A5.36 E81T1-C1A8-K2-H4

For Low Temperature Service Steel

APPLICATIONS

Welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG ships.


CHARACTERISTICS

SF-36E is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas. Weld metal shows stable toughness at low temperature range down to -60°C. Arc is stable and bead appearance and shape are excellent in all positions. Diffusible hydrogen content is as low as solid wires and crack resistance is excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni
CO_2	0.05	0.43	1.29	0.010	0.003	1.31

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength, MPa		Charpy 2V-notch, J		
MPa		%	-60°C	-40°C	
570	610	28	76	112	

■ TYPICAL WELD JOINT TEST

Base metal	Plate		Joint Tensile Test		Charpy 2V-notch,	
	Thickness mm	Shield Gas	Tensile	Location		J
			Strength, MPa	of Fracture	-60°C	-40°C
Low temperature service steel, YP410 MPa	50	CO_2	620	Base metal	60	104

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	1.4
	F, H	180~300	200~400
Current	OH	$180 \sim 250$	200~280
А	H-Fil	180~300	200~400
	V-up	180~250	200~280

Approval: NK, ABS, LR, DNV, BV, RS, GL, KR

SF-3AM

*AWS A5.36 E81T1-M21A8-Ni1-H4

For Low Temperature Service Steel

APPLICATIONS

FCAW

3

Seamless flux cored wire for Ar+CO $_{\rm 2}$ gas shielded arc welding of low temperature service steel for offshore structures, etc.

CHARACTERISTICS

SF-3AM is a rutile type seamless flux cored arc welding wire with Ar+20%CO2 shielding gas. It assures excellent impact toughness at low temperatures down to -40° C. It has also good usability in all position welding.

Moreover, due to its seamless surface, it provides various advantages better than conventional open-seam flux cored wires.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

AWS/ASME F/1G	HF/2F	H/2G	V OH/4G	€ >
---------------	-------	------	------------	------------

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni
$Ar+20\%CO_2$	0.05	0.33	1.28	0.010	0.003	0.89

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J -60°C
550	610	27	95

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
	F, H	180~300	200~400
Current	OH	$180 \sim 250$	200~280
А	H-Fil	180~300	200~400
	V-up	180~250	200~280

108

SF-3AMSR

*AWS A5.36 E71T1-M21A6-K6 E71T1-M21P6-K6

For Low-Alloy Steel, PWHT

APPLICATIONS

All position welding for YS420 down to -40°C, Ar+20%CO₂ shielding gas

CHARACTERISTICS

SF-3AMSR is new type of seamless flux cored wire for low temperature service steel under SR, in using mixed $Ar+CO_2$ shielding gas.

Weld metal shows excellent toughness in low temperature range down to-40°C. Crack resistance and weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness. Arc voltage should be 1 or 2 volt lower than that for conventinal flux cored wires and 4 or 5 volt lower than that for solid wires.
- 2. Enough care should be taken for gas shielding. A suitable shield gas flow rate is 20-25L/min.
- 3. Distance between base metal and tip should be kept within 20-30mm.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni
0.04	0.28	1.24	0.009	0.004	0.80

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

PWHT	Yield Strength MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -40°C, J
As welded	505	559	27	137
585°C×2.5hr	476	555	28	123

■ TYPICAL WELD JOINT TEST RESULT

Steel	Heat input kJ/cm	PWHT	Yield Strength MPa	Tensile Strength MPa	Charpy 2V-notch at –40°C, J	CTOD mm, at -10°C
EH40	505	As welded	515	587	110	0.37, 0.43
(T=50mm)	(Vertical-up)	585°C×2.5hr	489	579	84	0.55, 0.54

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2
G	F, H	180~300
Current	H-Fil	180~300
	V-up, OH	180~250

SF-47E

*AWS A5.36 E81T1-C1A8-Ni1-H4

For Low-Alloy Steel

APPLICATIONS

FCAW

3

All position welding for YS460 down to -60°C, 100%CO₂ shielding gas

CHARACTERISTICS

SF-47E is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas and designed for shipbuilding and offshore structure welding. Weld metal shows excellent toughness in low temperature range down to -60°C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni
0.05	0.46	1.31	0.012	0.004	0.96

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -60°C, J
545	600	28	70

TYPICAL WELD JOINT TEST

Base metal	Plate thickness mm	Welding position	Heat input kJ/cm	Yield Strength MPa	Tensile Strength MPa	Charpy 2V-notch at -60°C, J	
YS400	100	Vertical-up	22	575	640	65	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	
a	180~300	
Current A	H-Fil	180~300
	V-up, OH	180~260

110

For Low-Alloy Steel

APPLICATIONS

SF-50E

All position welding for YS500 down to -60°C, 100%CO₂ shielding gas

CHARACTERISTICS

SF-50E is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas and designed for offshore structure welding. Weld metal shows excellent toughness in low temperature range down to -60°C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (mass%)

С	Si	Mn	Р	S	Ni
0.04	0.25	1.21	0.012	0.003	2.30

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength MPa	Tensile Strength MPa	Elongation, %	Charpy 2V-notch at -60°C, J
563	626	25	85

■ TYPICAL WELD JOINT TEST RESULT

Base metal	Plate thickness mm	Welding position	Heat input kJ/cm	Yield Strength MPa	Tensile Strength MPa	Charpy 2V-notch at -60°C, J
YS420	100	Vertical-up	20	661	702	96

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	
<u> </u>	F, H	180~300
Current A	H-Fil	180~300
	V-up, OH	180~260

SF-50A

For Low-Alloy Steel

APPLICATIONS

All position welding for YS500 down to -40°C, Ar+20%CO₂ shielding gas

CHARACTERISTICS

SF-50A is a rutile type seamless flux cored arc welding wire to be used with $Ar+20\%CO_2$ shield gas and designed for shipbuilding and offshore structure welding. Weld metal shows excellent toughness in low temperature range down to -40°C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

AW5/ASME F/1G HF/2F	+/2G	V/ OH/4G	<u></u> ک
---------------------	------	-------------	--------------

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni
0.06	0.49	1.21	0.015	0.004	1.68

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -40°C, J
630	680	23	100

TYPICAL WELD JOINT TEST

Base metal	Plate thickness mm	Welding position	Heat input kJ/cm	Yield Strength MPa	Tensile Strength MPa	Charpy 2V-notch at -40°C, J	CTOD mm,at –10°C
YS500	63.5	Vertical-up	20	595	655	98	0.27

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	
C	F, H	180~300
Current A	H-Fil	180~300
	V-up, OH	180~250

112

L-55SN

*AWS A5.5 E7016-G

For Aluminium-killed Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of ASTM A516 Gr 55~70, classification Society Standard A32, 36, D32, 36, E32, 36, JIS SLA235A, 235B, 325A (N-TUF295N, 325N, 325, 365) steel for ships, pressure vessels, storage tanks and offshore structures.

CHARACTERISTICS

L-55SN is an extra low hydrogen type electrode for all positions of aluminiumkilled steel for low temperature service and 490MPa high tensile strength steel. It is suitable for welding offshore structures and structures to be used in frigid areas since weld metal shows excellent toughness even at -55 °C and CTOD (crack tip opening displacement) properties.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- 2. Optimum heat input in accordance with service conditions and plate thickness of structure should be applied in order to obtain desired toughness or CTOD value. Arc length should be kept as short as possible.
- 3. Backstep method should be applied to prevent blowholes and pits at arc starting.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

						/	
С	Si	Mn	Р	S	Ni	Ti	В
0.07	0.42	1.41	0.012	0.007	0.57	0.02	0.002

■ TYPICAL MECHANICAL PROPERTIES OF WELD JOINT

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J			
IVITa	IVIFa	70	Charpy 2V-n J -60°C -40°C 130 140	-30°C		
530	580	28	130	140	180	

■ TYPICAL CTOD VALUES OF WELD METAL (AS WELDED)

Base Metal	Guardia	Welding Conditions	CTOD Value, (mm)		
(Thickness)	Groove	Welding Conditions	-30°C	-10°C	
BS4360-50D		Diameter: 5.0mm	0.33	1.16	
	Y	Position:V-up	1.14	1.11	
(25mm)		Heat Input: 40kJ/cm	0.53	1.25	

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	(mm)	3.2	4.0	5.0	
Length (n	nm)	350	400	400	
Current	F, H-Fil	100~140	140~190	190~240	
А	V-up, OH	80~120	110~150	150~190	

Approval: NK, ABS, LR, DNV

Identification color: End-yellow, secondary-purple

N-12M

*AWS A5.5 E8016-C1

For 610MPa High Tensile Strength Steel

DESCRIPTION

Welding of $610\mathrm{MPa}$ high tensile strength steel (N-TUF490) for low temperature service steel.

APPLICATION

N-12M is a low hydrogen type electrode for all positions. This electrode is used by direct current (DCEP) polarity. Weld metal shows excellent low temperature toughness under post weld heat treatment (PWHT).

PROCEDURE

SMAW

3

- 1. Welding is operated in DCEP electrode positive polarity.
- 2. Electrodes should be dried at 350~400°C for 60 minutes before use.
- 3. Preheating in accordance with the type of steel, plate thickness, restraint, etc., i.e. at 50~100°C for a 35mm thick plate, is necessary to prevent cracks.
- 4. Select the optimum heat input in accordance with the required specification of structure and plate thickness to assure desired toughness.
- 5. Arc length should be kept as short as possible during welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Mo
0.07	0.36	1.15	0.011	0.002	2.59	0.12

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL (D+)

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch	PWHT
MPa	MPa	%	at -50°C, J	
579	659	25	161	580°C×4.5h

■ SIZE & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		3.2	4.0	5.0
Length (mm)		350	400	400
Current	F / H-fillet	100~140	140~190	$190 \sim 250$
Α	V-up, OH	90~130	120~170	140~190

114

N-13NM

JIS Z 3211 E4916-N7PUL *AWS A5.5 E7016-C2L

For 3.5%Ni Low Temperature Service Steel

DESCRIPTION

Welding of 3.5%Ni steel such as ASTM A203 Gr. D, E and JIS SL3N for pressure vessels and storage tanks.

APPLICATION

N-13NM is a low hydrogen type electrode for all positions. Weld metal shows excellent low temperature toughness under postweld heat treatment (PWHT)

PROCEDURE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating at 60~100°C is necessary depending on plate thickness. When stress-relief annealing is required, keep temperature below 610°C and increase cooling speed as much as possible.
- 3. Backstep method should be applied to prevent blowholes and pits at arc starting and arc length should be kept as short as possible during welding.
- 4. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.
- 5. Keep the proper heat in put to present from the deterioration of mechanical properties.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	С	Si	Mn	Р	S	Ni	Mo
0.	.03	0.24	0.82	0.010	0.008	3.44	0.10

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J		PWHT	
1111 (1	1111 0		-105°C	−80°C		
430	530	30	98	130	610°C×2h	

■ SIZE & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diamete	er (mm)	3.2	4.0	5.0
Length	(mm)	350	400	400
A	F, H-Fil	90-130	130-180	180-240
Amp.	V-up,OH	80-120	110-170	—

Approval:

Identification color: End-Light green, secondary-Red

Covered Arc Welding Electrodes for Low Temperature Service Steel

Brand		ication lor	Specif	ication	Dia.			
Name	End	Secon- dary	JIS	AWS	mm	Application and Characteristics		
N-5F	Yellow	Pink	Z 3211 E4928- GAP	_	5.0 5.5 6.0 7.0 8.0	Iron powder low hydrogen type electrode for horizontal and flat fillet welding of aluminium killed steel for low temperature service. Wel metal shows excellent toughness at $-45\sim-60^\circ$ Weldability is good and bead is beautiful wit equal leg length and without undercuts. It also suitable for gravity welding.		
	Welding	Position	AWS/ASME	F/1G	HF/2F			
N-11	Green	Dark brown	Z 3211 E5516- 3N3APL	☆ A5.5 E8016-G	3.2 4.0 5.0 6.0	Low hydrogen type electrodes assuring excellent toughness at $-45 \sim -60^{\circ}$ C. N-11 is suitable for all position welding.		
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G		
N-12	Green	Green	Z 3211 E5516- N5APL	☆ A5.5 E8016-C1	3.2 4.0 5.0 6.0	Low hydrogen type electrode for all positions. It is suitable for welding cryogenic LPG tanks since weld metal shows excellent toughness at -50~-60°C.		
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G		
N-13	Green	Orange	Z 3211 E5516- N7L	☆ A5.5 E8016-C2	2.6 3.2 4.0 5.0 6.0	Low hydrogen type electrode for all positions. Weld metal shows excellent toughness even at -60~-75°C.		
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G		
N-16	Blue	White	Z 3211 E5516- N13APL	☆ A5.5 E8016-G	2.6 3.2 4.0 5.0	Low hydrogen type electrode for welding 3.5% Ni steel for low temperature service in all positions. Weld metal contains 6.5%Ni and shows excellent toughness at $-75 \sim -105$ °C.		
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G		

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

T	ypical (of		cal Con Metal (on	Typical Mechanical Properties of Weld Metal					
С	Si	Mn	Р	s	Ni	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %		2V-notch,)°C	PWHT
0.07	0.19	1.12	0.012	0.007	0.73	480	550	29		0°C 8	_
0.07	0.49	1.15	0.012	0.005	1.62	540	610	29	-60°C 94	-45°C 130	_
0.06	0.44	1.02	0.015	0.005	2.38	520	600	28	-60°C 110	-50°C 120	_
0.05	0.42	0.46	0.010	0.008	3.35	500	580	29	-75°C 120	-60°C 140	_
0.04	0.17	0.28	0.010	0.005	6.65	600	680	21		5°C 10	As- welded
0.04	0.17	0.28	0.010	0.005	0.00	580	640	26	-10 9	5°C 5	600°C ×1hr

SMAW

NB-55 × Y-DS

*AWS A5.17 F7A8-EH14 F7P8-EH14

For Low Temperature Service Steel

APPLICATIONS

SAW

3

Multi-layer butt welding of aluminium-killed steel for low temperature service for offshore structures, installations for low temperatures service and structures to be used in frigid areas.

CHARACTERISTICS

NB-55 is a Ti-B type bonded flux and assures excellent low temperature toughness and CTOD both as welded and after stress relief annealing.

GUIDELINES FOR USAGE

- 1. Satisfactory weldability and weld metal properties are obtained with heat input of less than 50kJ/cm.
- 2. Flux should be used as fast as possible after taking out of the can. Flux should be redried at 250~350°C for 60 minutes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Base Metal	Plate Thickness mm	Welding Method
0.08	0.20	1.74	0.016	0.001	KE36	50	X groove, multi-layer (POLARITY; ACEP)

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Tensile Test		Ch	arpy 2 V-no	tch,		
Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	-60°C -40°C		-29°C	PWHT	
450	560	31	180	210	220	As-welded	
430	520	34	120	147	190	620°C×2hr	

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
100	4.0		1~4 5~16	600 600	30/33 30/33	30 30	Multi-layer, with back gouging

118

NB-55E × Y-D

*AWS A5.17 F7A8-EH14

for Low Temperature Service Steel

APPLICATIONS

Single-layer welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG storage tanks.

CHARACTERISTICS

Excellent toughness is obtained in multi-layer welding with 30~100 kJ/cm heat input.

GUIDELINES FOR USAGE

Flux should be used as fast as possible after taking out of the can. Flux should be redried at $250\sim350^{\circ}C$ for 60 minutes.

WELDING POSITION

AWS/ASME

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.09	0.18	1.65	0.018	0.007

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Tensile Te	Charpy 2	V-notch,		Plate			
Yield	Tensile	Elongation,	J		Base	Thickness	Welding	
Strength, MPa	Strength, MPa	%	−60°C	−40°C	Metal	mm	Method	
460	560	33	170	200	EH36	32	X groove	

■ TYPICAL GROOVE GEOMETRY AND WELLDING CONDITIONS

Plate Thickness mm	Wire Dia mm	Groove Geometry	Pass	Current A	Voltage V	Speed cm/min	Note
25	(L) 4.8		1	(L) 1000 (T) 900	$\begin{array}{c} 36\\ 40 \end{array}$	60	One pass both
20	(T) 6.4	90.2	2	(L) 1100 (T) 850	$\begin{array}{c} 36 \\ 40 \end{array}$	55	sides
32	(L) 4.8		1	(L) 1080 (T) 1000	$\begin{array}{c} 36 \\ 40 \end{array}$	45	One pass both
	(T) 6.4		2	(L) 1250 (T) 1100	$\begin{array}{c} 36\\ 40 \end{array}$	45	sides

NB-55LS × Y-3NI

*AWS A5.23 F7A10-EG-Ni3

for Low Temperature Service Steel

APPLICATIONS

SAW

3

Multi-layer welding of high-toughness YP360 and YP420 class steel for offshore structures in frigid sea area.

CHARACTERISTICS

It produces Ti-B bearing weld metal having excellent low temperature toughness as impact value at -70° C and CTOD value at -50° C in as welded condition. It provides sufficient resistance for sea water corrosion.

GUIDELINES FOR USAGE

Flux should be used as fast as possible after taking out of the can. Flux should be redried at 250~350°C for 60 minutes.

WELDING POSITION

AWS/ASME F/1G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Ti	в	Plate Thickness mm	Welding Method
0.04	0.10	1.22	2.92	0.03	0.003	25	Multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

r	Tensile Test		Ch	arpy 2 V-noto J	Plate	Welding	
Yield Strength, MPa	n, Tensile Elonga- tion, MPa %		−90°C	−70°C	-50°C	Thick- ness mm	Method
520	590	29	70	130	160	25	Multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELLDING CONDITIONS

Plate Thickness mm	Wire Dia mm	Groove Geometry	Pass	Current A	Volt- age V	Speed cm/min	note
25	4.8		1~8	750	33	30	Multi- layer
75	4.8	40 5 70' 30	2~Final	650 (L) 1000 (T) 800	28 34 40	30 40	Multi- layer

120

NB-55L × Y-D

*AWS A5.23 F7A8-EG-G F7P8-EG-G

For Low Temperature Service Steel

APPLICATIONS

Multi-layer butt welding of aluminium-killed steel for low temperature service for offshore structures, installations for low temperatures service and structures to be used in frigid areas.

CHARACTERISTICS

NB-55L is a Ti-B type bonded flux and assures excellent low temperature toughness and CTOD both as welded and after stress relief annealing.

GUIDELINES FOR USAGE

- 1. Satisfactory weldability and weld metal properties are obtained with heat input of less than 50kJ/cm.
- 2. Flux should be used as fast as possible after taking out of the can. Flux should be redried at $250\sim350$ °C for 60 minutes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Base Metal	Plate Thickness mm	Welding Method
0.09	0.20	1.51	0.015	0.007	SM490B	25	Multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

7	lensile Tes	t	Charpy 2	Charpy 2 V-notch,			Plate	
Yield	Tensile Elonga-		J		PWHT	Base	Thickness	Welding
Strength, MPa	Strength, MPa	tion, %	−60°C	−40°C	РМПІ	Metal	mm	Method
520	580	34	130	170	As-welded	SM490B	25	Multi-laver
490	570	33	100	150	600°C×1hr	SIM490D	20	wuttrayer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
25	4.8	25 20° 	1~11	700	30	30	Multi-layer

Approval: NK, ABS, LR, DNV, GL

NB-55E × Y-DM3

*AWS A5.23 F8A4-EG-G

for Low Temperature Service Steel

APPLICATIONS

Single-layer welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG storage tanks.

CHARACTERISTICS

Single or multi-layer welding of aluminium-killed steel for low temperature service for installations for low temperature service and structures to be used in frigid areas. Excellent toughness of -40° C is obtained in high heat input welding.

GUIDELINES FOR USAGE

Flux should be used as fast as possible after taking out of the can. Flux should be redried at 250~350°C for 60 minutes.

WELDING POSITION

SAW

3

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Mo
0.10	0.24	1.63	0.010	0.003	0.09

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Tensile Te	st	Charpy 2 V-notch,		Plate		
Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	J -40°C	Base Metal	Thickness	Welding Method	
530	650	26	140	EH36	32	One pass both sides	

■ TYPICAL GROOVE GEOMETRY AND WELLDING CONDITIONS

Plate Thickness mm	Wire Dia mm	Groove Geometry	Pa	ISS	Current A	Voltage V	Speed cm/min
			1st	1	(L) 1000 (T) 950	34 38	47
				2	(L) 1000 (T) 950	36 33	44
50	(L) 4.8 (T) 4.0	23		3	(L) 1000 (T) 950	$\begin{array}{c} 36 \\ 40 \end{array}$	44
		70*	2nd	1	(L) 1250 (T) 1000	34 33	50
				2	(L) 1000 (T) 950	38 40	46

NB-60L × Y-DM3

*AWS A5.23 F8A8-EG-G F8P8-EG-G

For Low Temperature Service Steel

APPLICATIONS

Multi-layer butt welding of aluminium-killed steel for low temperature service for offshore structures, installations for low temperatures service and structures to be used in frigid areas.

CHARACTERISTICS

NB-60L is a Ti-B type bonded flux and assures excellent low temperature toughness and CTOD both as welded and after stress relief annealing.

GUIDELINES FOR USAGE

- 1. Satisfactory weldability and weld metal properties are obtained with heat input of less than 50kJ/cm.
- 2. Flux should be used as fast as possible after taking out of the can. Flux should be redried at $250\sim350$ °C for 60 minutes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Mo	Base Metal	Plate Thickness mm	Welding Method
0.08	0.18	1.54	0.010	0.005	0.18	YP420	25	X groove, multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Т	ensile Test		Charpy 2	CTOD			Plate	
Yield	Tensile	Elonga-	V-notch,	Value	DWITT	Base	Thick-	Welding
Strength,	Strength,	tion,	J	mm	PWHT	Metal	ness	Method
MPa	MPa	%	−60°C	$-10^{\circ}\mathrm{C}$			mm	
560	640	32	140	2.36	As-welded	YP420	25	X groove, multi-
500	610	30	180	2.80	600°C×1.5hr	11 420	20	layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
75	4.8	75 70° 38 5 5 32	$\begin{array}{c c}1\\2{\sim}13\\14\\15{\sim}29\end{array}$		27 32 28 32	30 30 30 30	Multi-layer, with back gouging
25	4.8		1~11	700	30	30	Multi-layer

Approval: LR, DNV

Submerged Arc Welding Materials for Low Temperature Service Steel

	Sp	ecification		Typi	cal Che	emical f Weld
Brand Name	JIS	AWS	Application and Characteristics	С	Si	Mn
NSH-60 × Y-D	☆Z3183 S582-H	☆ A5.23 F8A4- EH14-G	Multi-layer butt welding and fillet welding of up to 570 MPa tensile strength grade such as ASTM A537 Cl.2 plate or APIX65 pipe. NSH-60 is an agglomerated flux containing iron powder, and is able to make high deposition rate and deep penetration welding. Combined with a wire of Y-D, It is able to high heat input welding up to approx. 150kJ/cm.	0.08	0.41	1.84
	Weld	ling Position	AWS/ASME F/1G			
NF-310 × Y-E	_	☆ A5.23 F8A8-EG-G F8P4-EG-G	Single and multi-layer flat butt welding of aluminium-killed steel for low temperature ser- vice for LPG storage tanks, installations for low temperature service and structures to be used in frigid areas. Weld metal shows extremely high toughness and excellent ductility. Weldability is satisfactory and slag is easy to remove.	0.09	0.27	1.36
	Weld	ling Position	AWS/ASME F/1G			
NF-310 × Y-DM3	_	☆ A5.23 F8A8-EG-G F8P4-EG-G	Single and multi-layer flat butt welding of aluminium-killed steel for low temperature ser- vice for LPG storage tanks, installations for low temperature service and structures to be used in frigid areas. Weld metal shows extremely high toughness and excellent ductility. Weldability is satisfactory and slag is easy to remove.	0.08	0.20	1.00
	Weld	ling Position	AWS/ASME F/1G			
NB-55E × Y-CM	_	_	Single-layer welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG storage tanks.	0.08	0.24	1.48
	Weld	ling Position	AWS/ASME F/1G			
NB-55 × Y-CMS	_	☆ A5.23 F8A8-EA4-A4 F8P8-EA4-A4	Multi-layer welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG storage tanks.	0.08	0.13	1.36
	Weld	ling Position	AWS/ASME F/1G			
NB-55 × Y-DM	_	☆ A5.23 F9A8-EA3-G F9P8-EA3-G	Single-layer welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG storage tanks.	0.09	0.12	1.62
	Weld	ling Position	AWS/ASME F/1G			

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Comp Metal	osition (%)			1	Typical Mecl Properties of W					Rema	rks	
Р	s	Mo	Ni	Yield Strength,	Tensile Strength,	Elonga- tion,		oy 2V- ich,	PWHT	Base Metal	Plate Thickness	Welding Method
				MPa	MPa	%	°C	J		Metal	mm	Method
							-40	65				
0.016	0.008	_	_	620	650		As- welded			25		
							-18	88				
						Ì	-75	120				
				520	590	31	-60	140	As-			
							-45	160	welded			
0.016	0.009	_	_				-30			-		Multi- layer
							-75					layer
				500	570	33	-60	86 130	630°C× 1hr	N- TUF 325N	20	
							-30	150	-			
							-60	100				
				530	600	27	-45	160	As-			
							-30	170	welded			
0.013	0.011	0.19	-				-60	72		-		
				520	600	30	-45	140	630°C× 1hr			
							-30	170	Inr			
							-60	63				_
0.010	0.003	0.18	_	490	650	27	-40	120		EH36	27	One pas both sides
							-60	87	As-	ĺ		
0.010	0.004	0.40		560	620	23	-40	120	welded	EH36	24	Multi-
0.010	0.004	0.40	-	530	590	25	-60	160	620°C×	Enso	24	layer
				000	000		-40	200	2hr			
				570	660	26	-60	62	As- welded			Multi-
0.009	0.002	0.35	-	550	630	28	-60	48	620°C× 2hr	SPV490Q	24	layer (DC+)

SAW

3

124

SAW

YM-55H

JIS Z 3312 G55AP4C0 *AWS A5.28 ER80S-G

For Low Temperature Service Steel

APPLICATIONS

GMAW

3

Welding of 490MPa high tensile strength steel for alminium-killed steel of low temperature.

CHARACTERISTICS

This is a gas metal arc welding wire to be used with CO_2 Shield gas. Arc is stable.spatters are few and weldability is good even in high welding current range. It assures excellent toughness at low temperatures down to $-45^{\circ}C$.

GUIDELINES FOR USAGE

1. Automatic welding is possibly VEGA-A process, our manpower saving automatic welding system

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Mo
0.08	0.44	1.36	0.006	0.002	-	0.18

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2	V-notch, J
560	630	29	-40°C	-20°C
500	030	29	70	145

■ TYPICAL WELDING JOINT TEST RESULT

Joint Tensile Test		Ch		Venotol	h T	D	Plate	
	Location of	Charpy 2V		v-note:	n, J	Base metal	thickness	Welding Method
	Fracture	−60°C	-40°C	−20°C	0°C	motar	mm	mothou
570	Base metal	50	90	-	-	A516Gr70	20	Two pass V-up of one side
590	Base metal	-	_	90	110	SM490B	20	One pass V-up of one side

■ SIZES<DC(+)>

Diame	eter (mm)	1.2	1.6
Current	F	$80 \sim 350$	$250 \sim 550$
Current	H-Fill	80~350	$250 \sim 550$
А	Н	80~300	$250 \sim 450$

*JIS Z 3312 G78A6UG0 *AWS A5.28ER110S-G

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of YP690 steel and TS780MPa high tensile strength steel (WEL-TEN 780, 780C and 780E etc.) of down to -60°C for offshore structures, pressure vessels, tanks, penstocks, turbine casings, crane and construction machineries.

CHARACTERISTICS

YM-69F that is used with $Ar+CO_2$ and $Ar+O_2$ shielding gas is a solid wire for gas metal arc welding. Weld metal of YM-69F that is used with $Ar+10\%CO_2$ shielding gas shows excellent toughness over 69J in low temperature range down to -60°C.

GUIDELINES FOR USAGE

- 1. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.
- 2. Preheating at 100~180°C is necessary depending on plate thickness and welding conditions.
- 3. It should be used Ar+10%CO₂ shielding gas, if the absorbed energy is required over 69J at -60° C.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL with Ar+10%CO2 (%)

С	Si	Mn	Ni	Cr	Mo
0.06	0.27	1.36	2.88	0.51	0.29

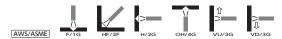
■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL with Ar+10%CO₂

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch
MPa	MPa	%	at -60°C, J
750	830	20	100

TYPICAL WELD JOINT TEST

	Base	metal	W	Welding conditions			Joint tensile test			
-	Type of Steel	Plate Thickness	Welding position	Heat input kJ/cm	Groove geometry	Yield Strength, MPa	Tensile Strength, MPa	Location of Fracture	Charpy 2V-notch at -60°C, J	
	WT 700	20	Flat	18	V groove,	-	810	Base Metal	91	
_	WT780	20 Ver	Vertical-up	17	Multi-layer and back gouging	815	910	-	100	

SIZES & RECOMMENDED CURRENT RANGE<DC(+)> (Shielding gas: Ar+10%CO2)


Diameter (mm)		1.2
	F, H	180~320
Current	VU, OH	100~200
А	Н	100~250
	VD	100~250

Approval: ABS, DNV

Gas Metal Arc Welding Wires for Low Temperture Service Steel

	•				
		Specifica	tion		
Brand Name	Application		Application and Characteristics		
YM-28E	$\begin{array}{c} \operatorname{Ar} \\ + \\ 10\% \\ \operatorname{CO}_2 \end{array}$	Z 3312 G49AP3UM12	☆A5.18 ER70S-G	$0.9 \\ 1.0 \\ 1.2 \\ 1.6$	YM-28E is a gas metal arc welding wire to be used with Ar+5-25%CO ₂ shield gas. Weldability is satisfactory and bead appearance is beautiful in both dip transfer and spray arc welding. Weld metal shows excellent mechanical properties and toughness. Ar+10%CO ₂ is used for welding aluminium-killed steel for low temperature ser- vice.
	Weld	ing Position	AWS/ASME	F/10	HF/2F
YM-36E	$\begin{array}{c} \mathrm{Ar} \\ + \\ \mathrm{20\%} \\ \mathrm{CO}_{\mathrm{z}} \end{array}$	Z 3312 G49AP6M17	☆A5.18 ER70S-G	1.2 1.6	YM-36E is a Ti-B type gas metal arc welding wire to be used with Ar+5~25%CO ₂ shield gas. Weldability is satisfactory and bead appear- ance is beautiful in both dip transfer and spray arc welding. It assures excellent toughness and CTOD values at low temperatures down to -60°C in a wide heat input range.
	Weld	ing Position	AWS/ASME	F/10	G HF/2F
YM-1N	$\begin{array}{c} \mathrm{Ar} \\ + \\ 10\% \\ \mathrm{CO}_2 \end{array}$	Z 3312 G57AP6MN2M1T	☆A5.28 ER80S-G	1.2 1.6	YM-1N is a gas metal arc welding wire to be used with Ar+5~20%CO ₂ shield gas. Weldability is satisfactory in spray arc and pulsed arc weld- ing. Weld metal shows excellent toughness in a wide heat input range from low to comparatively high. High efficiency and quality are obtained in the welding of aluminium steel to be used around -45°C when it is used for OSCON process, our manpower saving automatic welding process.
	Weld	ing Position	AWS/ASME	F/10	G HF/2F
YM-3N	Ar + 10% CO ₂	Z 3312 G49AP6UMN7	☆A5.28 ER80S-G	1.2 1.6	YM·3N is a gas metal arc welding wire to be used with $Ar+5-20\%CO_z$ shield gas. Weldability is satisfactory and bead appear- ance is beautiful in both dip transfer and spray arc welding. Weld metal shows excel- lent toughness at low temperatures like $-60^{\circ}C \sim -75^{\circ}C$.
	Weld	ing Position	AWS/ASME	F/10	6 HF/2F

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Typi	cal Cher	nical Co	ompositi	on of We	eld Meta	al (%)	Typical Mechanical Properties of Weld Mrta				rties of Weld Mrtal		
С	Si	Mn	Р	s	Ni	Mo	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %		2V-notch J	Type of Current	
0.07	0.61	1.21	0.008	0.005			460	570	30)°C 40	DC(+)	
0.05	0.33	1.20	0.004	0.002			500	540	30	-60°C 70	-40°C 220	DC(+)	
0.05	0.39	1.10	0.007	0.005	0.98	0.22	530	590	28	-60°C 100	−30°C 130	DC(+)	
0.04	0.30	0.70	0.006	0.004	3.56		540	610	27	−75°C 150	-40°C 200	DC(+)	

GMAW

GMAW

YT-28E

For Low Temperature Service Steels

APPLICATIONS

Gas Tungsten Arc Welding of mild steel, 490MPa high tensile strength steel and aluminium-killed steel for low temperature service.

CHARACTERISTICS

YT-28E is filler rods for GTAW (TIG welding) to be used with Ar shielding gas. The weld metal shows stable toughness at low temperature range down to -40° C. The weld bead shape is excellent since high fluidity of molten pool and high affinity between molten pool and base metal. It also suitable for uranami (sound penetration bead) welding.

The operability is good since the surface of the filler rod is smooth.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.07	0.60	1.45	0.010	0.005

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point,	Tensile Strength,	Elongation,	Charpy 2V-notch	PWHT
MPa	MPa	%	at -40°C, J	
440	550	34	170	As weld

■ SIZES<DC(-)>

Diameter (mm)	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)	1000	1000	1000	1000	1000

Identification color: End-yellow

Heat Resisting Steel

Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires *AWS A5.5 E7016-A1

For 0.5%Mo Heat Resisting Steel

APPLICATIONS

Welding of piping steel (STPA12, A335-P1), boiler and heat exchanger tubes (STBA12, A209-T1), rolled steel ,(A204-A, B, C), cast steel (A217-WC1) and forged steel (A182-F1, A336-F1) \cdot

CHARACTERISTICS

N-0S is a extra low hydrogen type electrode with a 0.5% Mo steel core wire and is suitable for welding C-Mo steel to be used at high temperatures up to 500°C.

GUIDELINES FOR USAGE

1. Electrodes should be redried at 350~400°C for 60 minutes before use.

2. Preheating at 100~200°C and postheating at 600~650°C are required.

WELDING POSITION

4

₩5/39ME F/1G HF/2F H/2G OH/4G VU/3G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Mo
0.06	0.51	0.60	0.012	0.006	0.52

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa			PWHT	
480	560	32	620°C×1h	

■ TYPICAL CREEP-RUPTURE STRENGTH OF WELD METAL

1,000h Creep-ru M	PWHT	
500°C	550°C	
265	165	720°C×1h

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		2.6	3.2	4.0	5.0	6.0
Length (mm)		300	300 350 400		400	400
Current	F	60~90	90~140	140~190	$190 \sim 240$	240~300
А	V-up, OH	$50 \sim 80$	80~120	$110 \sim 150$	140~180	

Approval:

132

Identification color: End-green, secondary-light yellow

N-1S/CM-1A

*AWS A5.5 E8016-B2

For 1.25%Cr-0.5%Mo Heat Resisting Steel

APPLICATIONS

Welding of piping steel (STPA22, 23, A335-P11, P12), boiler and heat exchanger, tubes (STBA22, 23, A199-T11, A213-T11, T12), rolled steel (SCMV2, 3, A387Gr11, 12), cast steel (A217-WC6) and forged steel (A 182-F11, F12, A336-F12).

CHARACTERISTICS

N-1S and CM-1A are low hydrogen type electrodes for $1\sim1.50\%$ Cr-0.5%Mo steel in all posirions. The welding metals require postheating at 620~720°C and are able to used at high temperatures up to 550°C.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating at 150~300°C and postheating at 620~720°C are required.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Brand name	С	Si	Mn	Р	S	Cr	Mo
N-1S	0.06	0.45	0.60	0.013	0.006	1.26	0.51
CM-1A	0.08	0.31	0.72	0.007	0.006	1.30	0.46

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Durandara	Test Temperature	Yield Point,	Tensile	Elongation,	Charpy 2V-notch	PWHT	
Brand name	°C	MPa	Strength, MPa	%	at −18°C, J	Р₩ПІ	
N-1S	R.T.	570	660	27	—	690°C×1hr	
CD 1 1 4	R.T.	440	565	29	240	COORCIVEL	
CM-1A	485	335	430	23	—	690°C×6hr	

■ TYPICAL CREEP-RUPTURE STRENGTH OF WELD METAL

Brand name	1,000h Creep-rupt	PWHT	
branu name	550°C	600°C	L ANDI
N-1S	170	92	720°C×1hr

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	N-1S	2.6	3.2	4.0	5.0	6.0
(mm)	CM-1A	_	—	4.0	5.0	6.0
Length (m	m)	300	350	400	400	450
Cumont A	F	60~90	90~140	$140 \sim 190$	$190 \sim 240$	$240 \sim 300$
Current A	VU, OH	$50 \sim 80$	80~120	$110 \sim 150$	140~180	_

Identification color of N-1S: End-white, secondary-light yellow Identification color of CM-1A: End-white

N-2S/CM-2A

For 2.25%Cr-0.5%Mo Heat Resisting Steel

APPLICATIONS

Welding of piping steel (STPA24, A335-P22), boiler and heat exchanger tubes (STBA24, A199-T22, A213-T22), rolled steel (SCMV4, A387Gr22, 22L), cast steel (A217-WC9) and forged steel (A182-F22, A336-F22).

CHARACTERISTICS

N-2S and CM-2A are low hydrogen type electrodes for 2.25%Cr-1%Mo steel in all posirions. The welding metals require postheating at 680~730°C and show extremely high creep-rupture strength at 550~600°C. In addition CM-2A is designed for the excellent notch toughness and low temper embrittlement.

GUIDELINES FOR USAGE

Electrodes should be redried at 350~400°C for 60 minutes before use.
 Preheating at 200~300°C and postheating at 680~730°C are required.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Brand name	С	Si	Mn	Р	S	Cr	Mo
N-2S	0.06	0.57	0.58	0.010	0.006	2.29	1.00
CM-2A	0.09	0.23	0.65	0.007	0.005	2.32	1.06

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Duralinana	Test Temperature	Yield Point,	Tensile	Elongation,	Charpy 2V-notch	PWHT
Brand name	°C	MPa	Strength, MPa	%	at −40°C, J	PWHI
N-2S	R.T.	590	690	24	_	690°C×1hr
CIL 0.4	R.T.	485	630	30	SR: 120, SR+SC: 91	0000v01
CM-2A	454	375	490	17	_	690°C×8hr

■ TYPICAL CREEP-RUPTURE STRENGTH OF WELD METAL

Brand name	1,000h Creep-rupture Strength, MPa	PWHT
	468°C	PWHT
N-2S	290	690°C×12hr

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	N-2S	2.6	3.2	4.0	5.0	6.0
(mm)	CM-2A	_	0.4	4.0	5.0	6.0
Length (m	m)	300	350	400	400	450
Cumment A	F	60~90	90~140	140~190	$190 \sim 240$	$240 \sim 300$
Current A	VU, OH	50~80	80~120	110~150	140~180	_

Identification color of N-1S: End-red, secondary-light yellow Identification color of CM-2A: End-yellow

	_					

Covered Arc Welding Electrodes for Heat Resisting Steel

Brand	ldentif Co	ication lor	Specif	ication	Dia.	
Name	End	Secon- dary	JIS	AWS	mm	Application and Characteristics
N-2SM	Yellow	Blue	_	☆A5.5 E9016-B3	3.2 4.0 5.0	Extra low hydrogen type electrode with a 2.25%Cr-1%Mo core wire. Weld metal rarely embrittles during service.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
N-3	Green	Black	_	☆A5.5 E9016-G	$2.6 \\ 3.2 \\ 4.0 \\ 5.0 \\ 6.0$	Extra low hydrogen type 1.7%Mn·0.7%Ni·0.4%Mo low alloy steel electrode. It is suitable for welding ASTM A533-B steel which is used for pressure vessels for nuclear reactor container.
	Welding	Position	AWS/ASME F/1G		HF/2F	H/2G OH/4G VU/3G
N-P31	Light green	_	_	☆A5.5 E9016-G	$3.2 \\ 4.0 \\ 5.0 \\ 6.0$	Low hydrogen type electrode suitable for ASTM A533 Type B, C class 1 steel.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
N-P32	Light blue	_	_	☆A5.5 E9016-G	$3.2 \\ 4.0 \\ 5.0 \\ 6.0$	Low hydrogen type electrode suitable for ASTM A533 Type B, C class 2 steel.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G

		Typic		mical ld Met					Test	Typical Mechanical Properties of Weld Metal				
С	Si	Mn	Р	s	Ni	Cr	Mo	v	temper- rature °C	Yield Strength, MPa	Tensile Strength, MPa	Elonga [.] tion, %	Charpy 2V-notch, J	PWHT
									RT	590	680	26	-29°C 160	690°C×6hr
0.11	0.33	0.66	0.007	0.004		2.24	1.00		454	460	530	21	−29°C 70	690°C×6hr +SC
0.11	0.55	0.66	0.007	0.004	_	2.24	1.00	-	RT	550	650	27	-29°C 160	690°C×19.8h
									454	420	500	20	−29°C 80	690°C×19.8h +SC
										590	680	30	-12°C 170	625°C×1hr
0.05	0.24	1.72	0.005	0.004	0.82	_	0.35	_	R.T.	520	600	30	-12°C 180	625°C× 45hr
									R.T.	580	640	24	0°C 140	620°C×2hr
0.08	0.35	1.29	0.012	0.006	0.40	-	0.46	_	R.T.	540	610	27	0°C 150	620°C× 40hr
									R.T.	620	690	23	0°C 130	610°C×2hr
0.08	0.29	1.45	0.011	0.006	0.74	-	0.46	-	R.T.	600	660	26	0°C 140	610°C× 40hr

Note : SC means Socal step cooling. Figure of illustration relating to the symbol of welding position in the table mentioned above.

Note : SC means Socal step cooling.

NF-250 × Y-511

*JIS Z 3183 S642-1CM *AWS A5.23 F8P2-EG-B2

For 1.25%Cr-0.5%Mo Heat Resisting Steel

APPLICATIONS

Narrow gap welding of 1~1.25%Cr-0.5%Mo heat resisting steel for boiler drums. main steam tubes, superheated steam tubes and chemical engineering apparatus,

CHARACTERISTICS

Slag is extremely easy to remove in one-layer one-pass or one-layer two-pass multi-layer narrow gap welding. NF-250 is a high basic type flux and chemical composition rarely changes even in multi-layer welding. Weld metal shows excellent toughness.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating of 150~250°C and postheating of 600~720°C are required.
- 3. Welding conditions should be carefully set up since excessive heat input and arc voltage against a given groove width may cause undercuts.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	In P S		Cr Mo		Base Metal	Plate Thickness mm	Welding Method	Groove
0.10	0.29	0.75	0.010	0.004	1.35	0.49	A387Gr11	50	3.2mm, tandem multi-layer	7R 3° U groove

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength, MPa	Elong- ation, %	Charpy 2 V-notch at -20°C, J	PWHT	Base Metal	Plate Thickness mm	Welding Method	Groove
600	27	150	650°C×4h	A387Gr11	50	3.2mm, tandem one-layer one-pass	7R 3° U
540	29	100	680°C×12h	ASO/Gr11	- 50	multi-layer	groove

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
		_	$1 \sim 2$	450	26	25	
50	(L) 3.2 (T) 3.2		3~13	(L) 450 (T) 450	26 26	50	Tandem multi-layer
	(1) 0.2		14	(L) 450 (T) 450	26 26	45	munti layer

138

NB-250M × Y-521H

*JIS Z 3183 S642-2CM *AWS A5.23 F9P2-EG-B3

For 2.25%Cr-1%Mo Heat Resisting Steel

APPLICATIONS

Multi-layer welding of extremely thick 2.25%Cr-1%Mo heat resisting steel for petroleum refining apparatus and chemical plants.

CHARACTERISTICS

NB-250M is a high basic type flux of low hydrogen content and, therefore, susceptibility to cracking caused by hydrogen is low. Weld metal shows excellent low temperature toughness and resistance to embrittlement during service.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 200-350°C for 60 minutes before use.
- 2. Preheating at 150-250°C, interpass temperatures and post heating at 680-730 °C are required.
- 3. Satisfactory weldability and weld metal properties are obtained with heat input of less than 40kJ/cm.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Cr	Mo	Base Metal	Plate Thickness mm	Welding Method
0.13	0.15	0.71	0.009	0.003	2.21	0.97	A387 Gr22	38	4.0mm,single narrow gap

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Т	'est Temp. ℃	Tensile Strength, MPa	Elonga- tion, %	PWHT	Charpy 2 V-notch at -45°C, J	PWHT	Base Metal	Plate Thickness mm	Welding Method
	R. T.	660	25	SR	150	$690^{\circ}C\times$			4.0mm,
	454	510	20	SR+SC	110	4h	A387	38	single
	R. T.	590	32	SR	180	700°C×	Gr22	00	narrow
	454	450	23	SR+SC	120	4h			gap

Note : SC means Socal step cooling. Approval:

NB-2CM × Y-521

*JIS Z 3183 S642-2CM *AWS A5.23 F9P2-EB3-B3

For 2.25%Cr-1%Mo Heat Resisting Steel

APPLICATIONS

Multi-layer welding of 2.25%Cr-1%Mo heat resisting steel for boiler drums and pressure vessels.

CHARACTERISTICS

Slag is extremely easy to remove in one-layer two-pass malti-layer narrow gap welding. Obtained weld metal shows excellent toughness and low temper-embrittlement.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating of 150~250°C and postheating of 680~720°C are required.
- 3. Welding conditions should be carefully set up since excessive heat input and arc voltage against a given groove width may cause undercuts.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Cr	Mo	Base Metal	Plate Thickness mm	Welding Method	
0.13	0.16	0.85	0.009	0.002	2.27	0.98	A387Gr22	50	4.0mm, tandem one- layer two-pass	

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensi Streng MPa	gth,	Elong- ation, %	Charpy 2 V:notch at -40°C, J	PWHT	Base Metal	Plate Thickness mm	Welding Method	Groove
640)	25	180	690°C×7h	A387Gr22	50	4.0mm, tandem	-26mm -
590)	30	195	690°C×26h	A367Gr22	50	one-layer two- pass multi-layer	

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
50	(L) 4.0 (T) 4.0	↑ 50mm ↓ +26mm ← 	all	(L) 560/570 (T) 560/570		57	Tandem multi-layer

140

NF-250 × Y-204

*JIS Z 3183 S642-MN *AWS A5.23 F9P6-EG-G

For 1.3%Mn-0.5%Mo and 1.3%Mn-0.5%Mo-0.5%Ni Heat Resisting Steel

APPLICATIONS

Narrow gap welding of ASTM A302B and A533B steel for nuclear reactor pressure vessels.

CHARACTERISTICS

Slag is extremely easy to remove in narrow gap welding. NF-250 is a high basic type flux and chemical composition rarely changes even in multi-layer welding. Weld metal shows excellent toughness.

GUIDELINES FOR USAGE

Welding conditions should be carefully set up since excessive heat input and arc voltage against a given groove width may cause undercuts.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Ni	Mo	Base Metal	Plate Thickness mm	Welding Method
0.07	0.18	1.76	0.011	0.002	0.67	0.45	A533B	150	3.2mm, tandem multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Test Temp.	Tensile Strength,	Elon- gation,	Charpy 2	V-notch, J	PWHT	Base Metal	Plate Thickness	Welding Method
°C	MPa	%	−27°C	−17°C		Wetai	mm	
R. T.	630	29						3.2mm, tandem multi-
350	560	23	140	150	630°C×45h	A533B	150	layer.
	000							Heat input: 28~35kJ/cm
R. T.	600	30						4.0mm, tandem multi-
350	550	27	200	210	630°C×45h	A533B	150	layer.
- 390	000	41						Heat input: 32~37kJ/cm

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

150	andem	
150 (T) 3 2 $\rightarrow 14$ $\rightarrow 2~43$ (L) 450 27 40~50 mul		
$(1) 5.2$ 2^{-43} $(T) 450$ 25 40^{-50} ma	Tandem multi-layer	
	inutti layer	
	andem lti-lovor	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	multi-layer	

Submerged Arc Welding Materials for Heat Resisting Steel

	Spe	cification		Typi	emical f Weld	
Brand Name	JIS	AWS	Application and Characteristics	С	Si	Mn
NF-1 × Y-DM	☆ Z 3183 S624-H4	☆ A5.23 F9A2-EA3-A3 F9P0-EA3-A3	Multi-layer narrow gap welding of ASTM A204 and A299 steel for boilers and pressure vessels. The combination is suitable for narrow gap weld- ing since slag is extremely easy to remove and flux consumption rate is low. Weld metal shows high toughness and excellent weldability and joint properties are assured even in high current welding.	0.10	0.18	1.39
	welding. Welding Position AWS/ASME F/1G					
NB-1CM ×	☆ Z 3183 S642-1CM	☆ A5.23 F9P2-EB2-B2	Multi-layer narrow gap welding of 1~1.25%Cr- 0.5%Mo heat resisting steel for boiler drums and pressure vessels.	0.09	0.27	1.17
Y-511S	Weldi	ng Position	[AWS/ASME] F/1G		0.21	

Note : Figure of illustration rela	ting to the symbol of welding po	sition in the table mentioned above.

Comp Metal	osition (%)				Р	Typical M roperties o			1	Remarks						
Р	s	Mo	Cr	Ni	Yield Strength,	Tensile Strength,	Elonga- tion,		y 2 V-notch,	PWHT	Base Metal	Plate Thick-	Welding Method			
					MPa	MPa	%	°C	J		Wetai	ness	Method			
0.016	0.005	0.52			640	670	27	-20	73	625°C ×3.5hr	A204C	50	I narrow groove, multi-laye (tandem)			
								0	110							
0.008	0.002	0.54	1.39	_	430	580	28	-18	201	690°C× 3.5hr	A387	25	Multi-layer			
					410	530	29	-18	18 220	690°C× 20.5hr	Gr11		(tandem)			

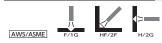
YM-505

*JIS Z 3317 G49C3M3T *AWS A5.28 ER80S-G

For 0.5%Mo Heat Resisting steel

APPLICATIONS

Welding with CO_2 gas for 0.5% Mo Steels such as piping steel (STPA12, A335-P1), boiler and heat exchanger tubes (STBA12, A209-T1), rooled steel (A204-A, B and C), cast steel (A217-WC1) and forged steel (A182-F1, A336-F1).


CHARACTERISTICS

YM-505 can be welded with CO_2 gas shielding. Arc is stable, spatters are few and bead appearance is good. Preheating at 100~200°C and postheating at 620~720°C are required. This product is used at higt temperatures up to 500°C and is not suitable for low temperature operation.

GUIDELINES FOR USAGE

- 1. Preheating and PWHT should be carried out accrding to the specification such as ASME and so on.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%,*ppm)

Brand name	Shielding gas	С	Si	Mn	Р	S	Cr	Mo	Sb	Sn	As	X-bar*
YM-505	$\rm CO_2$	0.07	0.46	1.07	0.004	0.005	-	0.49	-	-	-	-

*Note; X-bar=(10×%P+5×%Sb+4×%Sn+%As)×100

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Brand name	Shielding gas	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Charpy 2V-notch at -10°C, J	PWHT
YM-505	CO_2	630	670	26	110	as weld
110-909		610	680	27	95	620°C×1.0hrs.

■ SIZES & RECOMMENDED CURRENT <DC(+)>

Diameter (mm)	1.0	1.2	1.6
Current	F/1G, HF/2F	$70 \sim 250$	$200 \sim 350$	$300 \sim 500$
Range	H/2G, VU/3G	$70 \sim 150$	$100 \sim 250$	—
(A)	OH/4G, VD/3G	$70 \sim 150$	100~200	—

YM-511/YM-511A

*JIS Z 3317 G55C1CMT1 *AWS A5.28 ER80S-G *JIS Z 3317 G55M1CMT *AWS A5.28 ER80S-G

For 1~1.25%Cr-0.5%Mo Heat Resisting Steels

APPLICATIONS

YM-511: Welding with $\rm CO_2$ gas for 1~1.5% Cr-0.5% Mo Steels such as ASTM A335 P11/12 boiler tube.

YM-521A: Welding with Ar+CO2 mixture gas for 1~1.25% Cr-0.5% Mo Steels such as ASTM A387 Gr.12 or A335 P11/12

CHARACTERISTICS

YM-511 can be welded with CO_2 gas shielding. Arc is stable and bead appearance is good. And, this product is not suitable for low temperature operation.

YM 511A shoud be with shielding gas of Ar+5-25%CO₂ mixtures. This product is suitable for ASTM A387 Gr.11 & Gr.12 as well as T12 boiler tube. And, it is available to low temperature operation up to -18° C, further it meets the requirement of X-bar and temper embrittlement as per API 934-A(Step Cooling test) under PWHT conditions of 691°C×2~20 hours.

GUIDELINES FOR USAGE

- 1. Preheating and PWHT should be carried out accrding to the specification such as ASME and so on.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and pits.
- 3. From the above reason, provide a windbreak apparatus, especially in case shielded by Ar+5~25% CO_2 mixtures.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%,*ppm)

									<u> </u>			
Brand name	Shielding gas	С	Si	Mn	Р	S	Cr	Mo	Sb	Sn	As	X-bar*
YM-511	CO_2	0.07	0.38	1.00	0.014	0.009	1.05	0.5	-	-	-	_
YM-511A	Ar+20%CO ₂	0.06	0.35	0.78	0.005	0.002	1.28	0.54	0.001	0.001	0.002	6.1

*Note; X-bar=(10×%P+5×%Sb+4×%Sn+%As)×100

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Brand	Shielding	Yield Strength,	Tensile Strength,	Elon- gation,	Cha 2V-no	10	PWHT
name	gas	MPa	MPa	%	-23°C	0°C	
YM-511	CO ₂	_	670	36	_	160	720°C×1hr.
YM-511A	Ar+20%CO2	450	560	29	74	—	691°C×3.5hrs.
A116 INI	AIT40%002	450	450	32	74	_	691°C×24.5hrs.

■ SIZES & RECOMMENDED CURRENT <DC(+)>

Diameter (mm))	1.0	1.2	1.6
Current	F/1G, HF/2F	$70 \sim 250$	$200 \sim 350$	$300 \sim 500$
Range	H/2G, VU/3G	$70 \sim 150$	$100 \sim 250$	—
(A)	OH/4G, VD/3G	$70 \sim 150$	100~200	—

YM-521/YM-521A

*JIS Z 3317 G62C2C1M3 *AWS A5.28 ER90S-G *JIS Z 3317 G62M2C1M2 *AWS A5.28 ER90S-G

For 2.25%Cr-1%Mo Heat Resisting Steels

APPLICATIONS

YM-521: Welding with $\rm CO_2$ gas for 2.25% Cr-1%Mo Steels such as ASTM A335 P22 boiler tube.

YM-521A: Welding with Ar+CO $_2$ gas for 2.25% Cr-1%Mo Steels such as ASTM A387 Gr.22 or A335 P22.

CHARACTERISTICS

YM-521 can be welded with CO_2 gas shielding. Arc is stable and bead appearance is good. And, this product is not suitable for low temperature operation.

YM 521A shoud be with shielding gas of Ar+5~25%CO₂ mixtures. This product is suitable for ASTM A387 Gr.22 as well as T22 boiler tube. And, it is available to low temperature operation up to -29°C, further it meets the requirement of X bar and temper embrittlment as per API 934-A(Step Cooling test) under PWHT conditions of $691^{\circ}Cx5^{\sim}34$ hours.

GUIDELINES FOR USAGE

- 1. Preheating and PWHT should be carried out accrding to the specification such as ASME and so on.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and pits.
- 3. From the above reason, provide a windbreak apparatus, especially shielded by Ar+5~25% $\rm CO_2$ mixtures.

WELDING POSITION

AWS/ASME F/1G HF/2F H/2G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%,*ppm)

Trade name	Shielding gas	С	Si	Mn	Р	S	Cr	Mo	Sb	Sn	As	X-bar*
YM-521	CO ₂	0.06	0.59	1.30	0.013	0.009	2.40	0.92	-	-	-	_
YM-521A	Ar+20%CO ₂	0.11	0.19	0.67	0.006	0.002	2.38	1.02	0.001	0.001	0.002	7.1

*Note; X-bar=(10×%P+5×%Sb+4×%Sn+%As)×100

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Trade	Shielding	Yield Strength,	Tensile Strength,	Elon- gation,	Cha 2V-no	10	PWHT
name	gas	MPa	MPa	%	-29°C	0°C	
YM-521	CO_2	_	670	25	_	110	700°C×1hr.
YM-521A	Ar+20%CO2	490	630	29	103	—	691°C×5.5hrs.
1M 021A	Ar+20%CO2	390	590	31	102	_	691°C×33.5hrs.

■ SIZES & RECOMMENDED CURRENT <DC(+)>

Diameter (mm))	1.0	1.2	1.6
Current	F/1G, HF/2F	$70 \sim 250$	$200 \sim 350$	$300 \sim 500$
Range	H/2G, VU/3G	$70 \sim 150$	$100 \sim 250$	—
(A)	OH/4G, VD/3G	$70 \sim 150$	100~200	—

YT-505/YT-511/YT-521

*JIS Z 3317 W55G *AWS A5.28 ER80S-G *JIS Z 3317 W551CMT *AWS A5.28 ER90S-G JIS Z 3317 W622C1M2 *AWS A5.28 ER90S-G

For 0.5% Mo, 1~1.25%Cr-0.5%Mo and 2.25%Cr-1%Mo Heat Resisting Steels

APPLICATIONS

YT·505[:] Welding of 0.5% Mo steels such as ASTM A204 Gr. A·C or A335 P1 boiler tube. YT·511[:] Welding of 1~1.25%Cr·0.5%Mo Steels such as ASTM A387 Gr.11 or A335 P11/12 YT·521[:] Welding of 2.25%Cr·1%Mo Steels such as ASTM A387 Gr.22 or A335 P22.

CHARACTERISTICS

YT-505, YT-511 and YT-521 are filler rods and spool wire for GTAW (TIG welding) to be used with Ar shield gas. Those products show good welding performance in Uranami welding (penetration bead welding).

GUIDELINES FOR USAGE

- 1. Preheating and PWHT should be carried out accrding to the specification such as ASME and so on.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.
- 3. When uranami welding, it is recommended 100% Ar gas backings.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Trade name	Shielding gas	С	Si	Mn	Р	S	Cr	Mo	Sb	Sn	As	X-bar*
YT-505	100%Ar	0.09	0.02	1.74	0.013	0.004	-	0.46	-	-	-	—
YT-511	100%Ar	0.1	0.22	0.84	0.005	0.002	1.43	0.51	0.001	0.001	0.002	6.1
YT-521	100%Ar	0.12	0.08	0.76	0.005	0.004	2.35	0.98	0.001	0.001	0.002	6.1

*Note; X-bar=(10×%P+5×%Sb+4×%Sn+%As)×100

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Trade name	Shielding gas	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Cha 2V-no	10	PWHT
YT-505	100%Ar	590	670	33	277 (-50°C)	280 (-36°C)	590°C×2.2hrs.
11-909	100%Ar	520	600	31	279 (-50°C)	279 (-36°C)	645°C×9hrs.
YT-511	100%Ar	490	630	28	208 (-23°C)	231 (-12°С)	691°C×3.5hr
11-911	100%Ar	390	590	32	234 (-23°C)	278 (-12°C)	691°C×24.5hrs.
YT-521	100%Ar	500	650	29	_	279 (-29°С)	691°C×5.5hr
11-921	100%Ar	490	630	29	246 (-50°C)	266 (-29°С)	691°C×33.5hrs.

■ SIZES<DC(-)>

Diameter (mm)	0.8	1.0	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)	_	100%	1000	1000	1000	1000	1000
Weight of spool wire (kg)	12.5	12.5	12.5	100%	100%	100%	100%

Memo

Boiler Tube/Pipe

Covered Arc Welding Electrodes Gas Tungsten Arc Welding Rods and Wires

Covered Arc Welding Electrodes for Boiler Tube/Pipe

Brand		ication lor	Specif	ication	Dia.	
Name	End	Secon- dary	JIS	AWS mm 2.6 N-0S is a extra low hyd with a 0.5% Mo stael core		Application and Characteristics
N-0S	Green	Light yellow	_	☆ A5.5 E7016-A1		N-0S is a extra low hydrogen type electrod with a 0.5% Mo steel core wire and is suitabl for welding C-Mo steel to be used at high tem peratures up to 500°C.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
N-1S	White	Light yellow	_	☆ A5.5 E8016-B2	$2.6 \\ 3.2 \\ 4.0 \\ 5.0 \\ 6.0$	N·1S is a extra low hydrogen type electrod with a 1.25%Cr·0.5% Mo steel core wire and i suitable for welding 1~1.50%Cr·0.5%Mo stee to be used at high temperatures up to 550°C.
	Welding Position		AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
N-2S	Red	Light yellow	_	☆ A5.5 E9016-B3	2.6 3.2 4.0 5.0 6.0	N-2S is an extra low hydrogen type electrod with a 2.25%Cr-1%Mo steel core wire and is suitable for welding 2.25%Cr-1%Mo steel to b used at high temperatures up to 600°C. Wel Metal shows extremely high creep-ruptur strength at 550-600°C.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
N-HCM2S	Red	_	_		2.6 3.2 4.0	Low hydrogen type electrode suitable fo HCM2S(2:25%Cr 1.6%W-Mo-Nb-V) steel suc as ASTM T23/P23.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
N-HCM12A	Cream	_	_	_	2.6 3.2 4.0 5.0	Low hydrogen type electrode suitable fo HCM12A steel (11%Cr-2%W-0.4%Mo-Cu-Nb-V such as ASTM T122/P122.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typi	cal Chem	ical Com	position o	of Weld N	fetal (%)	Typical	Mechanical Me		of Weld	
	С	Si	Mn	Р	s	Others	Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2V-notch at 0°C, J	PWHT
	0.06	0.51	0.60	0.012	0.006	Mo: 0.52	480	560	32	_	620°C×1h
	0.06	0.45	0.60	0.013	0.006	Cr: 1.26 Mo: 0.51	570	660	27	_	690°C×1h
	0.06	0.57	0.58	0.010	0.006	Cr: 2.29 Mo: 1.00	590	690	24	_	690°C×1h
	0.06	0.41	0.80	0.004	0.002	Cr : 2.25 Mo: 0.10 Ni : 0.99	875	980	21	28	As welded
	0.00	0.41	0.00	0.004	0.002	W : 1.6 Nb : 0.04 V : 0.3	625	755	20	120	715°C×1h
-	0.08	0.25	0.84	0.004	0.001	$\begin{array}{l} Cr &: 10.5 \\ M_0 &: 0.20 \\ Ni &: 0.80 \\ W &: 1.4 \\ Nb &: 0.03 \\ V &: 0.18 \\ Cu &: 1.4 \end{array}$	665	810	23	54	740°C×5h

MAW

5

Gas Tungsten Arc Welding Rods and Wires for Boiler Tube/Pipe

		fication olor	Specif	ication			Турі	cal C
Brand Name	End	Secon- dary	JIS	AWS	Dia. mm	Application and Characteristics	С	s
YT-HCM2S	_	_	☆ Z 3317 W57 -2CMWV- Ni	_	1.0 1.2 1.6 2.0 2.4	Welding of HCM2S (2.25%Cr [.] 1.6%W-Mo [.] Nb [.] V) such as ASTM T23/P23	0.05	0.3
YT-9ST	_	_	☆ Z 3317 W62 -9C1MV1	A5.28 ER90S-G	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of Mod. 9%Cr·1%Mo (9%Cr·1%Mo· Nb·V) such as ASTM T91/P91	0.07	0.0
YT-HCM12A	_	_	☆ Z 3317 W69 -10CMWV- Cu		1.0 1.2 1.6 2.0 2.4	Welding of HCM12A (11%Cr-2%W-0.4%Mo-Cu- Nb-V) such as ASTM T122/P122	0.08	0.8
ҮТ•304Н Т•304Н	_	_	_	_	1.0 1.2 1.6 2.0 2.4	Welding of SUPER304H (18%Cr-9%Ni-3Cu-N)	0.10	0.5
YT·HR3C T·HR3C	_	_	_	_	1.0 1.2 1.6 2.0 2.4	Welding of HR3C (25%Cr-20%Ni-Nb-N) such as SA213 TP310HCbN	0.06	0.3

Турі	cal Chem	ical Com	position	of Weld N	Ietal (%)	Typical	Mechanical Me	l Properties etal	s of Weld	
С	Si	Mn	Р	s	Others	Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2V-notch at 0°C, J	PWHT
0.05	0.38	0.85	0.004	0.004	$\begin{array}{l} Cr & : 2.25 \\ Mo & : 0.10 \\ Ni & : 0.80 \\ W & : 1.6 \\ Nb & : 0.04 \\ V & : 0.25 \end{array}$	780	860	21	70	As welded
0.07	0.08	1.05	0.008	0.005	$\begin{array}{l} Cr & : 8.84 \\ Mo & : 1.01 \\ Ni & : 0.29 \\ Nb & : 0.05 \\ V & : 0.25 \end{array}$	580	710	25	_	740°C× 8.4h
0.08	0.35	0.52	0.010	0.002	$\begin{array}{l} Cr &: 10.4 \\ Mo &: 0.30 \\ Ni &: 1.10 \\ W &: 1.60 \\ Nb &: 0.05 \\ V &: 0.2 \\ Cu &: 1.4 \end{array}$	660	790	24	110	740°C× 0.5h
0.10	0.23	3.2	0.002	0.004	$\begin{array}{l} Cr &: 18.4 \\ Mo &: 0.85 \\ Ni &: 16.1 \\ Cu &: 3.0 \\ Nb &: 0.6 \\ N &: 0.20 \end{array}$	500	660	35	_	As welded
0.06	0.30	1.51	0.003	0.005	$\begin{array}{l} Cr & : 27.0 \\ Mo & : 0.91 \\ Ni & : 20.1 \\ Cu & : 2.94 \\ Nb & : 0.45 \\ N & : 0.31 \end{array}$	480	710	35	_	As welded

Memo

Atmospheric Corrosion Resisting Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

SF-50W

JIS Z 3320 T49J0T1-1CA-NCC1-UH5 *AWS A5.36 E71T1-C1A0-G

For 400~490MPa Atmospheric Corrosion Resisting Steel

APPLICATIONS

FCAW

6

Welding of $400 \sim 490$ MPa atmospheric corrosion resisting steel (W specification) such as SMA400W and 490W for steel frames and bridges.

CHARACTERISTICS

SF-50W is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas. Diffusible hydrogen content is extremely low and, consequently, weld metal shows excellent crack resistance. Weldability is excellent, and, especially in horizontal fillet welding, bead is beautiful and slag is easy to remove.

GUIDELINES FOR USAGE

- 1. Preheating at 50~150°C is required depending on plate thickness, restraint, surface condition of base metal, heat input, etc.
- 2. All water, rust and oil in groove should be removed.
- 3. Select optimum welding conditions, heat input for example, in accordance with welding positions.
- 4. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

SF-60W

JIS Z 3320 T57J1T1-1CA-NCC1-UH5 *AWS A5.36 E81T1-C1A0-W2

For Atmospheric Corrosion Resisting Steel

APPLICATIONS

Welding of 590MPa atmospheric corrosion resisting steel (W specification) such as SMA570W and 570W for steel brames and bridges.

CHARACTERISTICS

Rutile type seamless flux cored wire for welding 590MPa atmospheric corrosion resisting steel. The diffusible hydrogen content is extremely low and, consequently, crack resistance is high. Spatters are few and weldability is excellent.

GUIDELINES FOR USAGE

- 1. Preheating at 50~150°C is required depending on plate thickness, restraint, surface condition of base metal, heat input, etc.
- 2. All water, rust and oil in groove should be removed.
- 3. Select optimum welding conditions, heat input for example, in accordance with welding positions.
- 4. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

FCAW

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	C	Si	Mn	Р	S	Cu	Ni	Cr
CO_2	0.04	0.35	0.80	0.015	0.008	0.34	0.44	0.47

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
500	580	26	100

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter ((mm)	1.2	1.6		
Current A	F	180~300	$220 \sim 450$		
	H-Fil	180~300	$220 \sim 450$		
	V-up	$180 \sim 250$	200~280		

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	e on enternition					1	
С	Si	Mn	Р	S	Cu	Ni	Cr
0.05	0.50	1.18	0.012	0.005	0.42	0.61	0.51

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -5°C, J
630	685	22	115

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter ((mm)	1.2	1.6
Comment	F	180~300	$220 \sim 450$
Current	H-Fil	180~300	$220 \sim 450$
А	V-up	$180 \sim 250$	200~280

Approval:

Covered Arc Welding Electrodes for Atmospheric Corrosion Resisting Steel

Name daryEndSecon- daryJISAWSmmalTo 3CrRedBlack $\stackrel{\land}{\propto}$ Z 3214 E49J03 NCCAU2.6 3.2 4.0WLime-titania type electrode for welding of ASTM A242 steel thinner than 9 mm and finish welding of thick plates. Weld- ability is excellent in all positions.Welding PositionAWS/ASMEF/1GHF/2FH/2GOH/4GVU/3GCT-16CrWhiteYellow $\stackrel{\land}{\propto}$ Z 3214 E49J16 NCCAU $\stackrel{\land}{\propto}$ A5.5 E7016-G $\stackrel{2.6}{3.2}$ 4.0 5.0WExtra low hydrogen type electrode for welding of medium and thick plates in all positions. Crack resistance and me- chanical properties are excellent.CT-16CrWhiteYellow $\stackrel{\land}{\propto}$ Z 3214 E49J16 NCCAU $\stackrel{?}{\propto}$ A5.5 E7016-G $\stackrel{?}{3.2}$ 4.0 5.0WExtra low hydrogen type electrode for vertical downhand welding of fillet and but joints. Crack resistance and me- chanical properties are excellent.CT-16VcrSilverBlue- $\stackrel{?}{\approx}$ A5.5 5.0 $\stackrel{?}{3.2}$ 4.0WExtra low hydrogen type electrode for vertical downhand welding of fillet and but joints. Weld metal shows excellent traine resistance and mechanical proper- ties. High welding efficiency is assured since high current can be used.CT-16VcrBlueWhite $\stackrel{-}{-}$ $\stackrel{.0}{5.5}$ 6.0WIron powder titania type electrode for flat and horizontal fillet welding. Spatters efficiency is assured sitable for gravity welding.CT-26McrBlueWhite $\stackrel{.0}{-}$ </td <td>Brand</td> <td></td> <td></td> <td>Specif</td> <td>ication</td> <td>Dia.</td> <td></td> <td>Application and Characteristics</td>	Brand			Specif	ication	Dia.		Application and Characteristics	
$ \begin{array}{c c} CT \cdot 03Cr \\ \hline Red \\ Red \\ Black \\ \hline Red \\ Red \\ \hline Red \\ Black \\ \hline Red \\ Red \\ \hline Red $	Name	End		JIS	AWS	mm		Application and Characteristics	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CT-03Cr	Red	Black	E49J03-	_	3.2	w	of ASTM A242 steel thinner than 9 mm and finish welding of thick plates. Weld-	
$ \begin{array}{c c} {\rm CT}\ 16{\rm Cr} \\ {\rm CT}\ 16{\rm Cr} \\ {\rm White} \\ {\rm White} \\ {\rm Yellow} \\ {\rm Yellow} \\ {\rm Yellow} \\ {\rm F}\ 23214 \\ {\rm E}\ 4916 \\ {\rm NCCAU} \\ {\rm E}\ 7016-G \\ {\rm S}\ 0 \\ {\rm C}\ 0 \\ {\rm F}\ 16 \\ {\rm Velding\ Position} \\ {\rm F}\ 16 \\ {\rm H}\ 12{\rm F} \\ {\rm H}\ 12{\rm H}\ 1$		Welding	Position	AWS/ASME	F/1G	HF/2F	н	/2G OH/4G VU/3G	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CT-16Cr	White Yellow		E49J16-		3.2 4.0 5.0	w	welding of medium and thick plates in all positions. Crack resistance and me-	
$\begin{array}{c} {\rm CT}{}^{-16VCr} & {\rm Silver} & {\rm Blue} & {\rm -} & {\scriptstyle \stackrel{+}{x}A5.5} \\ {\rm Blue} & {\rm -} & {\scriptstyle \stackrel{+}{x}A5.5} \\ {\rm E7016-G} & {\scriptstyle \stackrel{+}{3.2}} \\ {\rm CT}{}^{-16VCr} & {\rm W} & {\scriptstyle \stackrel{\rm vertical downhand welding of fillet and butt joints. Weld metal shows excellent crack resistance and mechanical properties. High welding efficiency is assured since high current can be used. \\ \hline \\ {\rm Welding Position} & {\scriptstyle [{\rm AWS/ASME}] \ VD/3G} \\ {\rm CT}{}^{-26MCr} & {\scriptstyle \stackrel{\rm Blue} \\ {\rm Blue} } & {\scriptstyle \stackrel{\rm White} \\ {\rm Position} & {\scriptstyle \stackrel{-}{-} \\ {\scriptstyle \stackrel{-}{-} \\ {\scriptstyle \stackrel{-}{5.0} \\ \scriptstyle \stackrel{-}{5.0} \\ \scriptstyle \stackrel{-}{\circ} \\ {\scriptstyle \stackrel{-}{5.0} \\ \scriptstyle \stackrel{-}{5.0} \\ \scriptstyle \stackrel{-}{\circ} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}{} \\ {\scriptstyle \stackrel{+}{5.0} \\ \scriptstyle \stackrel{-}{\circ} \\ \scriptstyle \stackrel{-}{} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{+}{5.0} \\ \scriptstyle \stackrel{-}{} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}{} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{+}{5.0} \\ \scriptstyle \stackrel{-}{} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}{} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-} \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}{} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}{} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-} \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-} \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-} \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}} \\ \scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}{\scriptstyle \stackrel{-}} \scriptstyle \stackrel{-} \scriptstyle $		Welding	Position	AWS/ASME	HF/2F	HF/2F H/2G OH/4G VU/3G			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CT-16VCr	Silver Blue		_		4.0	w	vertical downhand welding of fillet and butt joints. Weld metal shows excellent crack resistance and mechanical proper- ties. High welding efficiency is assured	
$\begin{array}{c c} {\rm CT-26MCr} & {\rm Blue} & {\rm White} & - & - & {4.5} \\ {\rm Scarlet} & {\rm White} & - & - & {4.5} \\ & {\rm White} & - & - & {5.0} \\ & {\rm Welding Position} & {\rm Welding Soster} \\ \hline {\rm Welding Position} & {\rm Welding Soster} \\ {\rm Scarlet} & {\rm Light} \\ {\rm yellow} & {\rm yding Soster} \\ & {\rm yding Soster} \\ \hline {\rm Scarlet} & {\rm Light} \\ \hline {\rm yellow} \\ \hline {\rm Scarlet} & {\rm Light} \\ \hline {\rm Scarlet} & {\rm yding Soster} \\ \hline {\rm Scarlet} & {\rm White} \\ \hline {\rm Scarlet} & {\rm White} \\ \hline {\rm Scarlet} & {\rm Hight} \\ \hline {\rm Scarlet} & {\rm Scarlet} \\ \hline {\rm Scarlet} & {\rm Light} \\ \hline {\rm Scarlet} & {\rm Scarlet} \\ \hline {\rm Scarlet} & {\rm Sca$		Welding	Position	AWS/ASME					
$ \begin{array}{c c} \mbox{CT-60Cr} \end{array} \begin{array}{c} \mbox{Scarlet} \end{array} \begin{array}{c} \mbox{Light} \\ \mbox{yellow} \end{array} \begin{array}{c} \mbox{$\overset{1}{$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	CT-26MCr	Blue	Blue White		_	4.5 5.0 5.5	w	and horizontal fillet welding. Spatters are few and bead shape is beautiful with equal leg length and without undercuts.	
$ \begin{array}{c} \mbox{CT-60Cr} \end{array} \begin{tabular}{c} \sum carlet$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $		Welding	Position	AWS/ASME	F/1G	HF/2F			
Welding Position AWS/ASME F/1G HF/2F H/2G OH/4G VU/3G	CT-60Cr	Scarlet		E57J16-		4.0 5.0		welding of ASTM A242 and A588 steel in all positions. It assures excellent weld- ability, X-ray properties, crack resistance	
		Welding	Position	AWS/ASME	F/1G	HF/2F	н	/2G OH/4G VU/3G	

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typical o		al Com Metal (%			Typical Mechanical Properties of Weld Metal				
С	Si	Mn	Cu	Cr	Ni	Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J	
0.05	0.16	0.41	0.32	0.48	0.15	500	570	29	110	
0.04	0.37	0.62	0.35	0.50	0.14	500	560	30	240	
0.06	0.41	0.72	0.32	0.47	0.13	520	570	29	160	
0.07	0.31	0.85	0.33	0.48	0.14	470	550	30	110	
0.07	0.38	0.67	0.44	0.56	0.62	520	610	25	-18°C 180	

6

SMAW

Submerged Arc Welding Materials for Atmospheric Corrosion Resisting Steel

Name met ol Char				Tur	in al Ch				
Name al Char	Application and				Typical Chemical of Weld				
JIS AWS and	acteristics	С	Si	Mn		s			
NF-820 ☆Z 3183 ☆A5.23 × S50J2-AW1 F7A0-EG-G W including 490MPa atu	Fillet and butt welding of including MISA Welding Process, of mild steel and 490MPa atmospheric corro- sion resisting steel.				0.011	0.006			
Welding Position AWS/ASME 1F	HF/2F								
YF-15B ☆Z 3183 ☆A5.23 w of mild ste	Flat filler and butt welding of mild steel and 490MPa atmospheric corrosion resist- ing steel.		0.45	1.31	0.014	0.007			
Welding Position [AWS/ASME] F/1G									
NF-310 ☆Z 3183 ☆A5.23 × S50J2-AW1 F7A4-EG-G W welding of 490MPa at sion resistin low tempera Ti-B type w	Single and multi-layer welding of mild steel and 490MPa atmospheric corro- sion resisting steel requiring low temperature toughness. Ti-B type weld metal shows excellent low temperature toughness.		0.22	0.89	0.007	0.008			
Welding Position [AWS/ASME] F/1G					P S 0.011 0.00 0.014 0.00 0.007 0.00 0.012 0.00				
NF-820 ☆Z 3183 ☆A5.23 w MISA Weld	ding, including ding Process, of mospheric corro- ng steel.	0.06	0.60	1.67	0.012	0.008			
Welding Position AWS/ASME 1F	ME 1F HF/2F								
	and butt welding atmospheric cor- ting steel.	0.08	0.45	1.43	0.018	0.009			
Welding Position AWS/ASME F/1G	AWS/ASME F/1G								

Compos Metal (1	Typical Me Properties of				Remarks			
~			Yield	Tensile	Elonga	Charpy	v 2 V-notch,		Plate		
Cu	Ni	Cr	Strength, MPa	Strength, MPa	tion, %	°C	J	Base Metal	Thickness mm	Welding Method	
0.35	0.14	0.56	490	570	27	0	76	SMA 490BW	20	Multi-layer	
0.37	0.11	0.55	510	600	27	-20	85	SMA	20	Multi-layer	
0.37	0.37 0.11	0.00	510	000	21	0	120	490BW			
						-60	130		20 Mu		
0.37	0.12	0.12 0.59	560	600	28	-40	150	SMA 490BW		Multi-layer	
						-20	170				
0.37	0.10	0.56	540	640	25	-5	66	SMA 570W	20	Multi-layer	
0.37	0.10	0.57	520	630	29	-5	88	SMA 570W	20	Multi-layer	

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

SAW

6

SAW

Gas Metal Arc Welding Wires for Atmospheric Corrosion Resisting Steel

		Specifi	ication		
Brand Name	Shield Gas	JIS	AWS	Dia. mm	Application and Characteristics
YM-55W	CO_2	☆Z 3315 G49JA0UC1- NCCJ	☆A5.28 ER80S-G	0.9 1.2 1.6	Welding of mild steel and $400{\sim}490MPa$ atmospheric corrosion resisting steel (W specification) for various structural works. YM-55W is a gas metal arc welding wire for all posi- tions to be used with CO ₂ shield gas. Arc is stable, spatters are few and weldability is good in wide cur- rent range.
	Welding Position	AWS/ASME	F/1G	HF/2F	H/2G VD/3G
YM-60W	CO ₂	☆Z 3315 G57JA1UC1- NCCJ	☆A5.28 ER80S-G	0.9 1.2 1.6	Welding of 570MPa atmospheric corrosion resisting steel (W specification) for various constructions. YM-60W is a gas metal arc welding wire for all posi- tions to be used with CO_z shield gas. Arc is stable, spatter are few and weldability is good in wide cur- rent range.
	Welding Position	AWS/ASME	F/1G	HF/2F	H/2G VD/3G
FGC-55	CO2	☆Z 3315 G49A0UC1- CCJ	☆A5.28 ER80S-G	1.0 1.2 1.6	Welding of 400~490MPa atmospheric corrosion resist- ing steel (P specifications) and sulfuric acid corrosion resisting steel (S-TEN1) for various structural works. FGC-55 is a gas metal arc welding wire for all posi- tions.
	Welding Position	AWS/ASME	F/1G	HF/2F	H/2G VD/3G

Ту	pical Cl	hemical	l Compo	osition o	of Weld	Metal	(%)	Typical Mechanical Properties of Weld Metal				
С	Si	Mn	Р	s	Cu	Cr	Ni	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Charpy 2V-notch at 0°C, J	Type of Current
0.06	0.48	1.05	0.006	0.008	0.50	0.61	0.21	580	630	27	90	DC(+)
0.07	0.38	0.83	0.016	0.005	0.58	0.50	0.46	540	640	26	−5°C 110	DC(+)
0.08	0.36	0.98	0.016	0.005	0.35	0.48		460	570	25	180	DC(+)

6

GMAW

Memo

Sulphuric Acid Corrosion Resisting Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires *AWS A5.36 E81T1-C1AZ-G

High corrosion-resistance equipment to S-TEN 1

APPLICATIONS

High corrosion resisting low alloy steel S-TEN 1 for use in flue-gas treatment equipment at thermal power stations and waste incineration plants, and chloride acid washing tanks.

CHARACTERISTICS

Corrosion resistance of the weld metal is as high as that of the base metal, thus reducing concern of corrosion to a minimum. It is attributed to the alloying composition control technology, which was applied to S-TEN 1 and has also been used in the development of the welding materials to secure high corrosion-resistance.

The weld metal gives not only remarkably higher hydrochloric-acid dewpoint corrosion resistance but also improved sulfuric-acid dew-point corrosion resistance, as compared with that of the conventional welding materials

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. Distance between base metal and tip should be kept within 20~30mm.
- 4. Arc voltage should be 1 or 2 volt lower than that for conventional flux cored wires and 4 or 5 volt lower than that for solid wires.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Cu	Sb
CO_2	0.05	0.60	1.41	0.012	0.013	0.39	0.10

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
580	640	27	47

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2
	F	180~320
0	H-Fil	180~320
Current	Н	180~300
A	V-up	180~260
	OH	180~260

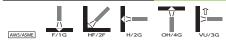
166

7

for Sulphuric Acid Corrosion Resisting Steel

APPLICATIONS

Rutile type flux cored wire for welding S-TEN2, sulphuric acid corrosion resisting steel. Spatters are few and weldability is excellent.


CHARACTERISTICS

Rutile type flux cored wire for welding S-TEN2, sulphuric acid corrosion resisting steel. Spatters are few and weldability is excellent.

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
- 2. A suitable shield gas flow rate is $20 \sim 25\ell/min$.
- 3. Distance between base metal and tip should be kept within 20~30mm.
- 4. Arc voltage should be 1 or 2 volt lower than that for conventional flux cored wires and 4 or 5 volt lower than that for solid wires.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Cu	Cr
CO_2	0.04	0.36	0.97	0.018	0.014	0.35	0.77

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
530	600	25	62

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2
	F	180~320
0	H-Fil	180~320
Current	Н	180~300
Λ	V-up	180~260
	OH	180~260

Approval:

ST-16M

High corrosion-resistance equivalent to S-TEN1

APPLICATIONS

Corrosion resisting low alloy steel for use in flue-gas treatment equipment at thermal power stations and waste incineration plants, and chloride acid washing tanks.

CHARACTERISTICS

Corrosion resistance of the weld metal is as high as that of the base metal, thus reducing concern of corrosion to a minimum. It is attributed to the alloying composition control technology, which was applied to S-TEN 1 and has also been used in the development of the welding materials to secure high corrosion-resistance.

The weld metal gives not only remarkably higher hydrochloric-acid dewpoint corrosion resistance but also improved sulfuric-acid dew-point corrosion resistance, as compared with that of the conventional welding materials.

GUIDELINES FOR USAGE

- 1. Electrode should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pit at arc starting and arc length should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Cu	Sb
0.04	0.62	0.50	0.009	0.004	0.42	0.08

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V notch at 0°C, J
470	570	29	170

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mi	n)	2.6	3.2	4.0	5.0
Length (mm)		350	350 400		400
Current	F	70~100	100~140	$150 \sim 200$	190~250
Α	V-up, OH	60~90	80~110	120~160	140~180

Approval:

Identification color: End-yellow, secondary-light blue

Memo

169

Covered Arc Welding Electrodes for Sulfuric Acid Corrosion Resisting Steel

Brand	ldentification Color		Specification		Dia.	
Name	End	Secon- dary	JIS	AWS	mm	Application and Characteristics
ST-03Cr	White	Blue	Z 3211 E4903-G	_	2.6 3.2 4.0	Lime-titania type electrode for welding of S·TEN 2 steel in all positions. Weld metal contains Cu and Cr, and shows high corrosion resistance to sulfur dew point, sea water and polluted water. Excellent weldability makes it suitable for welding thin plates of less than 9 mm and finish welding of thick plates.
	Welding Position		AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
ST-16Cr	Light yellow	Orange	Z 3211 E5516-G	☆ A5.5 E7016-G	3.2 4.0 5.0	Extra low hydrogen type electrode for welding of medium and thick S-TEN 2 plates in all positions. Weld metal contains Cu and Cr, and shows high corrosion resistance to sulfur dew point, sea water and polluted water. Crack resistance and mechanical properties are ex- cellent.
	Welding Position		AWS/ASME F/1G		HF/2F	H/2G OH/4G VU/3G
ST-03CrA	Orange	_	Z 3211 E4903-G	_	2.6 3.2 4.0	Suitable for CR1A. Its coating is lime-titania type and the operating performance is excel- lent in all positions. It is also applicable for sea water corrosion resisting steel.
	Welding Position		AWS/ASME F/1G		HF/2F	H/2G OH/4G VU/3G
ST-16CrA	Green	_	Z 3211 E4916-G	☆ A5.5 E7016-G	3.2 4.0	Suitable for CR1A. Its coating is low hydrogen type and crack-resistance of weld metal and mechanical properties are excellent.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Ту	pical Ch of W	emical C eld Meta		on	Typical Mechanical Properties of Weld Metal				
С	Si	Mn	Cu	Cr	Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J	
0.06	0.15	0.56	0.23	0.79	460	530	26	110	
0.05	0.50	0.48	0.20	0.73	480	570	27	200	
0.08	0.24	0.66	0.22	1.23	500	570	25	59	
0.07	0.38	0.69	0.23	1.18	570	620	26	180	

7

Submaged Arc Welding Meterial for Sulphuric Acid Corrosion Resisting Steel

Brand	Specif	ication					
Name JIS AWS	Application and Characteristics						
NB-1ST × Y-1ST	_	_	Corrosion resistance of the weld metal is as high as that of the base met- al, thus reducing concern of corrosion to a minimum. It is attributed to the alloying composition control technology, which was applied to S-TEN 1 and has also been used in the development of the welding materials to secure high corrosion-resistance.				
	Welding Position		AWS/ASME F/1G				

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Т	Typical Chemical Composition of Weld Metal (%)			'n	Турі	cal Mechar of Weld	nical Prope d Metal	rties		Remarks				
С	Si	Mn	Р	s	Cu	$_{\rm Sb}$	Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %		urpy lotch J	Base Metal	Plate Thickness mm	Welding Method
0.03	0.34	1.13	0.007	0.011	0.19	0.09	450	530	31	0	141	S-TEN1	19	Multi layer

SAW

Gas Metal Arc Welding Wires for Sulphuric Acid Corroison Resisting Steel

Shield Gas	JIS	AWS	Dia. mm	Application and Characteristics
CO_2	_	_	0.9 1.2	Welding of sulphuric acid corrosion resisting steel.
Welding Position	AWS/ASME] F/1G	HF/2F	H/2G VD/3G
				Velding

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Λ		<>	Ŵ	Û > ──	>■
AWS/ASME	F/1G	HF/2F	H/2G	OH/4G	VU/3G	VD/3G

Ty	Typical Chemical Composition of Weld Metal (%)							Typical Mechanical Properties of Weld Met				
с	Si	Mn	Р	s	Cu	Cr	Ni	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Charpy 0°C, J	Type of Current
0.08	0.44	0.89	0.012	0.006	0.45	0.91	_	570	620	24	60	DC (+)
											-20°C 50	

7

YT-1ST

For high corrosion-resistance equipment to S-TEN 1

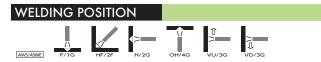
APPLICATIONS

Gas Tungsten Arc Welding of high corrosion resisting low alloy steel S-TEN 1 for use in air preheaters, flue-gas treatment equipments, flues and smokestacks at waste incineration plants, thermal power stations and chloride acid washing tanks.

CHARACTERISTICS

Corrosion resistance of the weld metal is as high as that of the base metal. thus reducing concern of corrosion to a minimum. It is attributed to the alloying composition control technology, which was applied to S-TEN 1 and has also been used in the development of the welding materials to secure high corrosionresistance.

The weld metal gives not only remarkably higher hydrochloric-acid dewpoint corrosion resistance but also improved sulfuric-acid dew-point corrosion resistance, as compared with that of the conventional welding materials. The weldability is excellent similar to mild steel welding.


GUIDELINES FOR USAGE

5

7

176

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Sb	Cu
0.01	0.29	1.33	0.10	0.32

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Point, MPa			Charpy 2V-notch at 0°C, J	PWHT
400	480	39	280	As weld

■ SIZES<DC(-)>

Diameter (mm)	1.0	1.2	1.6	2.0	2.4
Length of Filler Rod (mm)	_	1000	1000	1000	1000
Weight of spool wire (kg)	10	_	_	_	_

YT-W4

For Sulphuric Acid Corroison Resisting steel

APPLICATIONS

Gas Tungsten Arc Welding of sulphuric Acid Corroison Resisting steel.

CHARACTERISTICS

YT-W4 is filler rod and wire for GTAW (TIG welding) of sulphuric Acid Corroison Resisting steel.

The weldability is excellent similar to mild steel welding.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Cr	Cu
0.06	0.54	1.05	0.73	0.35

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

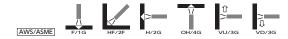
Yield Point,	Tensile Strength,	Elongation,	Charpy 2	РЖНТ		
MPa	MPa	%	-20°C	0°C	I W II I	
510	580	26	150	71	As weld	

■ SIZES<DC(-)>

Diameter (mm)	1.0	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)		_	1000	1000	1000	1000
Weight of spool wire (kg)	10	10	—	—	—	—

Identification color: End-orange

<u>Memo</u>


Sea Water Corrosion Resisting Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

Flux Cored Arc Welding Wires for Sea Water Corrosion Resisting Steel

Brand	Specif		ication	Dia.		
Name	Gas	ля	AWS	mm	Application and Characteristics	
SF-55RS	$\rm CO_2$	_	☆A5.36 E81T1-C1A0- G	1.2	Rutile type seamless flux cored wire for weld- ing MARILOY S400, S490, G400 and G490, sea water corrosion resisting steel. Diffusible hydrogen content is extremely low and crack resistance is high. Weldability is excellent in all positions.	
	Welding Position	AWS/ASME F	/1G HF/2F	H/2G	OH/4G VU/3G	

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typical Chemical Composition of Weld Metal (%)				Typical Mechanical Properties of Weld Metal				Туре			
С	Si	Mn	Р	s	Cu	Mo	Cr	Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2V-notch, J	of Current
0.04	0.34	1.07	0.017	0.007	0.33	0.09	0.86	580	640	26	0°C 54	DC (+)

180

FCAW

Covered Arc Welding Electrodes for Sea Water Corrosion Resisting Steel

Brand		ication lor	Specification		Dia.	Application and Characteristics		
Name	End	Secon- dary	JIS	AWS	mm	Apprecision and Characteristics		
RS-55	Blue	_	Z 3211 T4916-G	☆A5.5 E8016-G	$3.2 \\ 4.0 \\ 5.0 \\ 6.0$	Low hydrogen type electrode for welding of sea water corrosion resisting steel (MARILOY S400, S490) in all positions. Weld metal con- tains Cr and shows high resistance to sea wa- ter corrosion. Crack resistance and mechani- cal properties are also excellent.		
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G		

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typical Chemical Composition of Weld Metal (%)					Typical Mechanical Properties of Weld Metal				
С	Si	Mn	Cu	Cr	Mo	Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J	
0.05	0.53	0.57	_	1.00	_	500	590	26	220	

8

Gas Metal Arc Welding Wires for Sea Water Corrosion Resisting Steel

			cation		
Brand Name	Shield Gas	JIS	AWS	Dia. mm	Application and Characteristics
YM-W4	$\rm CO_2$	_	_	0.9 1.2	Welding of 400~490MPa sea water corrosion resisting steel
	Welding Position	AWS/ASME	F/1G	HF/2F	H/2G VD/3G
YM-55RSA	Ar+ 20%CO ₂	_	_	1.2	Welding of 400~490 MPa sea water corrosion resisting steel
1M-99KSA	Welding Position	AWS/ASME	F/1G	HF/2F	H/2G VD/3G

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Ty	pical Cl	nemical	l Compo	osition o	of Weld	Metal ((%)	Typical Mechanical Properties of Weld Metal				
С	Si	Mn	Р	s	Cu	Cr	Ni	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Charpy 2V- notch at 0°C, J	Type of Current
0.08	0.44	0.89	0.012	0.006	0.45	0.91		570	620	24	60 20°C 50	DC (+)
0.06	0.34	1.07	0.010	0.006	0.23	1.09	_	460	550	28	190	DC (+)

GMAW

8

Gas Tungsten Arc Welding Rods and Wires for Sea Water Corrosion Resisting Steel

Brand	Shield	Specif	ication	Dia.	Application and Characteristics
Name	Gas	JIS	AWS	mm	Application and Characteristics
YT-W4	Ar	_	_	1.2 1.6 2.0 2.4 ×1000	Welding of sea water corrosion resisting steel and salpharic acid corrosion resisting steel
YT-55RS	Ar	_	_	2.4 ×1000	Welding of sea water corrosion resisting steel (MARILOY S400 and S490).

Тур	ypical Chemical Composition of Weld Metal (%)				Typical Mechanical Properties of Weld Metal				
С	Si	Mn	Cr	Cu	Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 0°C, J	
0.06	0.54	1.05	0.73	0.35	510	580	26	150 -20°C 71	
0.04	0.31	1.05	1.16	0.11	480	540	27	_	

Memo

Stainless Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

SF-308L

JIS Z 3323 TS308L-FB0 *AWS A5.22 E308LT0-1

For Low Carbon 18% Cr-8% Ni Stainless Steel

APPLICATIONS

Welding of low carbon 18%Cr-8%Ni stainless steel for chemical apparatus. containers and plants.

CHARACTERISTICS

SF-308L is a seamless flux cored arc welding wire to be used with CO_2 or Ar+ more than 20%CO₂ shield gas. Spatters are few, slag is easy to remove and bead appearance and shape are excellent. It is highly resistant to moisture absorption and wire feeding is smooth since the wire has no seam. High welding efficiency is assured in flat and horizontal fillet positions.

GUIDELINES FOR USAGE

- 1. Distance between base metal and tip should be kept within the range of 15~25mm.
- 2. Shield gas flow rate should be kept within $20 \sim 25\ell/min$.

WELDING POSITION

190

SF-309L

JIS Z 3323 TS309L-FB0 *AWS A5.22 E309LT0-1

For Dissimilar Metals such as Stainless Steel and Mild Steel

APPLICATIONS

18%Cr-8%Ni clad steel and parts of hardenable steel of which heat treatment after welding is impossible or which require low carbon weld metal.

CHARACTERISTICS

SF-309L is a seamless flux cored arc welding wire to be used with CO_2 or Ar+ more than 20%CO₂ shield gas. Spatters are few, slag is easy to remove and bead appearance and shape are excellent. It is highly resistant to moisture absorption and wire feeding is smooth since the wire has no seam. High welding efficiency is assured in flat and horizontal fillet positions.

GUIDELINES FOR USAGE

- 1. Distance between base metal and tip should be kept within the range of 15~25mm.
- 2. Shield gas flow rate should be kept within $20 \sim 25\ell/min$.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni	Cr
CO_2	0.033	0.59	1.51	0.024	0.008	10.7	19.9

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength,	Elongation,
MPa	%
550	41

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	0.8	0.9	1.2	1.6
Current (A)	$50 \sim 150$	70~170	$100 \sim 250$	200~350

Approval: NK, ABS, LR, DNV, BV, RS

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni	Cr
CO_2	0.034	0.65	1.54	0.023	0.009	12.7	24.4

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength,	Elongation,
MPa	%
590	31

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

			<u> </u>	
Diameter (mm)	0.8	0.9	1.2	1.6
Current (A)	$50 \sim 150$	70~170	$100 \sim 250$	$200 \sim 350$

Approval: NK, ABS, LR, DNV, BV, RS

FCAW

SF-N309L

For Dissimilar Metals such as Stainless Steel and Mild Steel -Self-Shielded type-

APPLICATIONS

Welding of dissimilar metal such as type 304L to carbon steel, welding the clad side of type 304L clad steels and cladding (surfacing) of stainless steel to carbon steel.

CHARACTERISTICS

SF-N309L is a Self-Shielded seamless flux cored arc welding wire of type 309L stainless steel. Shielding gas is unnecessary and welding cost is reducible. It is a few spatters, easily removable slag and a smooth bead appearance. In addition, X-ray quality and Mechanical properties of weld metal is excellent.

GUIDELINES FOR USAGE

- 1. Distance between base metal and tip should be kept within the range of $20{\sim}30\mathrm{mm}.$
- 2. All water, rust and oil in groove should be completely removed to prevent welding porosity in weld metal.
- 3. In the welding of dissimilar metals, excessive dilution deteriorates crack and corrosion resistance. Should be been careful the penetration to base metal.

WELDING POSITION

192

FCAW

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shielding gas	С	Si	Mn	Ni	Cr
None	0.03	0.65	1.50	12.6	24.3

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Shielding gas	Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch
	MPa	MPa	%	at -20°C, J
None	515	661	32	37

■ TYPICAL MECHANICAL PROPERTIES OF WELD JOINT

Shielding gas	Tensile Strength,	Location of	Charpy 2V-notch
	MPa	Fracture	at -20°C, J
None	507	Base metal	42

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2
Current (A)	$100 \sim 250$

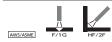
SF-316L

*JIS Z 3323 TS316L-FB0 *AWS A5.22 E316LT0-1

For Low Carbon 18% Cr-12% Ni-2%Mo Stainless Steel

APPLICATIONS

Welding of low carbon 18%Cr-8%Ni stainless steel for chemical engineering and power plants.


CHARACTERISTICS

SF-316L is a seamless flux cored arc welding wire to be used with CO_2 or Ar+ more than 20%CO₂ shield gas. Spatters are few, slag is easy to remove and bead appearance and shape are excellent. It is highly resistant to moisture absorption and wire feeding is smooth since the wire has no seam. High welding efficiency is assured in flat and horizontal fillet positions. 18%Cr-12%Ni-2%Mo weld metal contains an adequate amount of ferrite and shows excellent resistance to hot cracking.

GUIDELINES FOR USAGE

- 1. Distance between base metal and tip should be kept within the range of $15{\sim}25 \mathrm{mm}.$
- 2. Shield gas flow rate should be kept within 20~25ℓ/min.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shielding gas	C	Si	Mn	Р	S	Ni	Cr	Cr
CO_2	0.033	0.65	1.48	0.025	0.007	12.1	19.6	2.34

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength,	Elongation,
MPa	%
570	34

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

			<u> </u>	
Diameter (mm)	0.8	0.9	1.2	1.6
Current (A)	$50 \sim 150$	70~170	$100 \sim 250$	$200 \sim 350$

Approval: NK, ABS, LR, DNV

Flux Cored Arc Welding Wires for Stainless Steel

D IN	Specif	ication	Dia.		
Brand Name	JIS	AWS	mm	Application and Characteristics	
SF-308	Z 3323 TS308-FB0	☆A5.22 E308T0-1	0.9 1.2 1.6	Welding of SUS304	
	Welding Position	AWS/ASME F/1G	HF/	2F	
SF-308LP	Z 3323 TS308L-FB1	☆A5.22 E308LT1-1	1.2	Positional Welding of SUS304L	
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G	
SF-309LP	Z 3323 TS309L- FB1	☆A5.22 E309LT1-1	1.2	All-possition type. Welding of low-C 22%Cr- 12Ni stainless steel and dissimilar metals	
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G	
SF-309MoL	Z 3323 TS309LMo-FB0	☆A5.22 E309LMoT0-1	0.9 1.2 1.6	Welding of dissimilar metals such as 18%Cr- 12%Ni-2%Mo stainless steel to mild steel	
	Welding Position	AWS/ASME F/1G	HF/	2F	
SF-309MoLP	Z 3323 TS309LMo-FB1	☆A5.22 E309LMoT1-1	1.2	All possition type. Welding of dissimilar met- als such as 18%Cr-12%Ni-2%Mo stainless steel to mild steel	
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G	
SF-316LP	Z 3323 TS316L- FB1	☆A5.22 E316LT1-1	1.2	Positional welding of SUS316L	
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G	
SF-317L	Z 3323 TS317L- FB0	☆A5.22 E317LT0-1	1.2	Welding of SUS317L	
	Welding Position	AWS/ASME F/1G	HF/	2F	

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Турі			hanical prop weld metal				
С	Si	Mn	Ni	Cr	Mo	Other	TS, MPa	El, %
0.06	0.53	1.49	9.3	19.4		_	600	35
0.03	0.52	1.49	10.3	20.5	_	_	560	38
0.03	0.57	1.53	12.3	24.2	_	_	570	33
0.035	0.62	1.49	13.1	23.7	2.38	_	740	29
0.03	0.51	1.02	12.9	24.0	2.25	_	670	29
0.03	0.58	1.10	12.3	19.2	2.30	_	570	35
0.03	0.65	0.93	13.3	19.7	3.32	_	600	30

FCAW

FCAW

Flux Cored Arc Welding Wires for Stainless Steel

Brand Name	Specifi	ication	Dia.	Application and Characteristics		
	JIS	AWS	mm	Application and Characteristics		
SF-2120	_	_	1.2	UNS S82122, S32101 Lean Duplex stainless steel		
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G VU/3G		
SF-DP8	Z3323 TS2209-FB0	☆A5.22 E2209T0-1	1.2	Welding of JIS SUS329J3L, and UNS S31803		
SF DI 0	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G		
SF-DP3	Z 3323 TS329J4L-FB0	_	1.2 1.6	Welding of SUS329J4L or UNS S39226 Duplex Stainless steel		
	Welding Position	AWS/ASME F/1G	HF/	2F		
SF-DP3W	_	☆A5.22 E2594T0-1	1.2 1.6	Welding of SUS329J4L or UNS S32750 Duplex Stainless steel		
	Welding Position	AWS/ASME F/1G	HF/	2F		
FCM-430NL	_	_	1.0 1.2	Welding of SUS430 or SUS405		
	Welding Position	AWS/ASME F/1G	HF/	2F		

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typi		ehanical prop weld metal					
С	Si	Mn	Ni	Cr	Mo	Other	TS, MPa	El, %
0.04	0.61	1.02	10.1	26.8	0.93	N: 0.10	790	26
0.03	0.44	1.14	8.80	23.5	3.05	N: 0.13	808	24.1
0.04	0.64	1.00	10.4	25.6	2.82	Cu: 0.41 W: 0.25 N: 0.13	845	25
0.03	0.60	1.12	9.5	26.0	3.67	Cu: 0.41 W: 0.97 N: 0.22	910	24
0.03	0.40	0.24	_	17.9	_	Nb: 0.50	520	28

6 FCAW

FCAW

S-308·R

JIS Z 3221ES308-16 *AWS A5.4 E308-16

For 18%Cr-8%Ni Stainless steel

APPLICATIONS

Welding of 18%Cr-8%Ni austenitic stainless steel for chemical apparatus, containers and plants.

CHARACTERISTICS

S-308 R is a lime-titania type stainless steel electrode depositing 19%Cr-9%Ni metal. Slag is easy to remove, arc is stable, spatters are few and bead appearance is beautiful.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 150~250°C for 60 minutes before use.
- 2. Dirt such as oil, grease and dust should be completely removed from groove.
- 3. Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

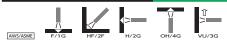
WELDING POSITION

JIS Z 3221 ES308L-16 *AWS A5.4 E308L-16

For Low Carbon 18%Cr - 8%Ni Stainless Steel

APPLICATIONS

Welding of SUS304L type austenitic stainless steel.


CHARACTERISTICS

S-308L R is a Low Carbon-19%Cr-9%Ni covered electrode

GUIDELINES FOR USAGE

- 1. Welding is operated in either AC or DC electrode positive polarity.
- 2. Electrodes should be dried at 150~250°C for 60 minutes before use.
- 3. Dirt such as oil, grease and dust should be completely removed from groove.
- 4. Preheat is not necessary, interpass temperature should be less than 150°C
- 5. Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

WELDING POSITION

198

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Cr
0.05	0.36	1.35	0.020	0.008	9.8	19.2

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength, MPa	Elongation, %	Creep-rupture Strength (as welded,650°C×1,000h), MPa
610	42	130

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	r (mm)	2.0	2.6	3.2	4.0	5.0
Length (mm)	250	300	350	350	350
Current	F	$45 \sim 65$	$55 \sim 95$	75~125	100~160	$150 \sim 220$
А	V-up, OH	40~60	$50 \sim 85$	$65 \sim 105$	85~135	_

Approval: NK

Identification color: End-vellow, secondary-vellow

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Cr	Mo	Cu	Other
0.03	0.28	1.55	0.034	0.007	9.80	19.00	0.02	0.02	—

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

0.2% Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
385	548	47	95

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diamete	r (mm)	2.0	2.6	3.2	4.0	5.0
Length	(mm)	250	300	350	350	350
Current	F / H-fillet	$45 \sim 50$	55~70	80~100	110~140	140~170
А	V-up, OH	35~45	45~65	70~80	100~130	_

Approval: NK Identification color: End-Red SMAW

S-309·R

For 22%Cr-12%Ni Staintess Steel and Dissimilar Metal

APPLICATIONS

Welding of 22%Cr-12%Ni stainless steel, dissimilar metals such as 18% Cr-8%Ni stainless steel to mild steel or low alloy steel, 18%Cr-8%Ni stainless clad steel, and the parts of hardenable steel for which post-heat treatment is impossible, for petroleum, chemical and textile industries.

CHARACTERISTICS

S-309 R is a lime-titania type stainless steel electrode. 25% Cr-12% Ni weld metal shows extremely high crack resistance due to its high ferrite content.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 150~250°C for 60 minutes before use.
- 2. Dirt such as oil, grease and dust should be completely removed from groove.
- 3. Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

WELDING POSITION

S-309L·R

JIS Z 3221 ES309L-16 *AWS A5.4 E309L-16

For Dissimilar Metal such as Stainless Steel and Mild Steel

APPLICATIONS

Welding of clad side of SUS304 class clad steel. Welding of dissimilar metal such as SUS304 type stainless steel.

CHARACTERISTICS

S-309L R is a Low Carbon-24%Cr-13%Ni covered electrode

GUIDELINES FOR USAGE

- 1. Welding is operated in either AC or DC electrode positive polarity.
- 2. Electrodes should be dried at 150~250°C for 60 minutes before use.
- 3. Dirt such as oil, grease and dust should be completely removed from groove.
- 4. Preheat is not necessary, interpass temperature should be less than 150°C
- 5. Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

WELDING POSITION

g

SMAW

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Cr
0.06	0.33	1.51	0.020	0.006	13.2	24.2

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength, MPa	Elongation, %	Creep-rupture Strength (as welded,650°C×1,000h), MPa
590	37	120

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	r (mm)	2.0	2.6	3.2	4.0	5.0
Length (mm)		250	300	350	350	350
Current	F	$45 \sim 65$	$55 \sim 95$	$710 \sim 125$	$100 \sim 160$	$150 \sim 220$
А	V-up, OH	40~60	$50 \sim 85$	$65 \sim 105$	85~135	

Approval: NK

Identification color: End-black

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Cr	Mo	Cu	Other
0.03	0.37	1.52	0.020	0.008	13.0	24.4	0.09	0.09	—

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

0.2% Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
445	582	36	88

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	(mm)	3.2	4.0	5.0	
Length (mm)		350	350	350	
Current	F / H-fillet	80~100	110~140	140~170	
Α	V-up, OH	70~80	100~130	—	

Approval: NK

Indentification color : End-yellow green, secondary-blue

S-309ML·R

*AWS A5.4 E309LMo-16

For Dissimilar Metal such as SUS316L type Stainless Steel and Mild Steel

APPLICATIONS

Welding of clad side of SUS316L class clad steel. Welding of dissimilar metal such as SUS316L type stainless steel.

CHARACTERISTICS

S-309ML R is a Low Carbon-23% Cr-13% Ni-2% Mo $% \ covered \ electrode$

GUIDELINES FOR USAGE

- 1. Welding is operated in either AC or DC electrode positive polarity.
- 2. Electrodes should be dried at 150~250°C for 60 minutes before use.
- 3. Dirt such as oil, grease and dust should be completely removed from groove.
- 4. Preheat is not necessary, interpass temperature should be less than $150^{\circ}\mathrm{C}$
- 5. Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

WELDING POSITION

S-316L·R

JIS Z 3221 ES316L-16 *AWS A5.4 E316L-16

For Low Carbon 18%Cr - 12%Ni - 2%Mo Stainless Steel

APPLICATIONS

Welding of SUS316L type austenitic stainless steel.

CHARACTERISTICS

S-316L R is a Low Carbon-18%Cr-12%Ni-2%Mo covered electrode

GUIDELINES FOR USAGE

- 1) Welding is operated in either AC or DC electrode positive polarity.
- 2) Electrodes should be dried at 150~250°C for 60 minutes before use.
- 3) Dirt such as oil, grease and dust should be completely removed from groove.
- 4) Preheat is not necessary, interpass temperature should be less than 150°C
- 5) Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Cr	Mo	Other
0.03	0.32	1.80	0.024	0.013	13.2	22.7	2.40	_

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength,	Elongation,
MPa	%
600	34

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	(mm)	2.6	3.2	4.0	5.0
Length (mm)		300	350	350	350
Current	F / H-fillet	$55 \sim 70$	80~100	110~140	$140 \sim 170$
Α	V-up, OH	45~60	70~80	100~130	—

Approval: NK, DNV

Indentification color : End-Silver, secondary-red

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Cr	Cu	Mo	Other
0.03	0.46	1.42	0.026	0.011	12.40	19.30	0.02	2.12	—

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

0.2% Yield Point, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
436	580	38	98

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		2.0	2.6	3.2	4.0	5.0
Length (mm)		250	300	350	350	350
Current	F / H-fillet	$40 \sim 50$	$55 \sim 70$	80~100	110~140	140~170
А	A V-up, OH		45~65	70~80	100~130	_

Approval: NK Indentification color : End-green SMAW

g

Covered Arc Welding Electrodes for Stainless Steel

Brand Name	Specif	ication	Dia. mm				
	JIS	AWS					
S-309M•R	Z 3221 ES- 309Mo-16	☆A5.4 E309Mo-16	2.6 3.2 4.0 5.0	Welding of dissimilar metals such as 18%Cr [.] 12%Ni•2%Mo stainless steel to mild steel			
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G			
S-310•R	Z 3221 ES310-16	☆A5.4 E310-16	2.0 2.6 3.2 4.0 5.0	Welding of SUS310			
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G			
S-316•R	Z 3221 ES316-16	☆A5.4 E316-16	2.0 2.6 3.2 4.0 5.0	Welding of SUS316			
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G			
S-316LN•R	_	_	2.6 3.2 4.0 5.0	Welding of SUS316LN			
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G			
S-316CL•R	Z 3221 ES316LCu-16	_	2.6 3.2 4.0 5.0	Welding of SUS316J1L			
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G			
S-317L•R	Z 3221 ES317L-16	☆A5.4 E317L-16	2.6 3.2 4.0 5.0	Welding of SUS317L			
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G			
S-347•R	Z 3221 ES347-16	☆A5.4 E347-16	2.6 3.2 4.0 5.0	Welding of SUS321 or 347			
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G			
	Z 3221 ES347L-16	☆A5.4 E347-16	2.6 3.2 4.0	Welding of low-C type for SUS347			
S-347L•R			5.0				

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typic	al chemical (compositions	of weld met	al (%)		propertie	Typical mechanical properties of weld metal	
С	Si	Mn	Ni	Cr	Mo	Other	TS, MPa	El, %	
0.08	0.41	1.68	13.2	24.1	2.51		650	34	
0.07	0.41	1.93	21.3	26.0	_	_	570	36	
0.05	0.33	1.48	12.9	18.3	2.35	_	590	37	
0.023	0.38	1.54	11.9	19.2	2.3	N: 0.15	610	39	
0.03	0.33	1.61	13.7	18.5	2.40	Cu: 1.60	570	36	
0.034	0.46	1.77	13.2	19.7	3.26		610	35	
0.05	0.37	1.58	9.7	20.4	_	Nb: 0.68	670	38	
0.026	0.78	1.61	10.2	19.3		Nb: 0.40	590	39	

SMAW

g

g

SMAW

Covered Arc Welding Electrodes for Stainless Steel

Brand Name	Specif	ication	Dia.	Application and Characteristics	
	JIS	AWS	mm		
S-347AP•R	_	_	2.6 3.2 4.0 5.0	Welding of pipe for 347AP	
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G	
S-170	-	_	2.6 3.2 4.0 5.0	Welding of NSSC170, YUS170	
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G	
S-2120•R	_	—	3.2 4.0	UNS S82122, S32101 Lean Duplex Stainless steel	
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G VU/3G	
S-DP8	Z 3221 ES2209-16	☆A5.4 E2209-16	2.6 3.2 4.0	Welding of SUS329J3L for duplex stainless steel	
	Welding Position	AWS/ASME F/1G	HF/	/2F H/2G OH/4G VU/3G	
S-DP3	Z 3221 ES329J4L-16	_	2.6 3.2 4.0	Welding of SUS329J4L for duplex stainless steel	
	Welding Position	AWS/ASME F/1G	HF/	2F H/2G OH/4G VU/3G	
S-DP3W	_	_	2.6 3.2 4.0	Welding of DP3W for super duplex stainless steel	
	Welding Position	AWS/ASME F/1G	HF/	2F	
S-410Nb	Z 3221 ES409Nb-16	☆A5.4 E419Nb-16	2.6 3.2 4.0 5.0	Welding of SUS403, 405 and 410	
	Welding Position	AWS/ASME F/1G	HF/	/2F H/2G OH/4G VU/3G	
S-430Nb	Z 3221 ES430Nb-16	★A5.4 E430-16	2.6 3.2 4.0 5.0	Welding of SUS430	
	Welding Position	AWS/ASME F/1G	HF/	/ /2F H/2G OH/4G VU/3G	

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Typical chemical compositions of weld metal (%)								Typical mechanical properties of weld metal	
С	Si	Mn	Ni	Cr	Mo	Other	TS, MPa	El, %	
0.05	0.56	1.40	9.57	19.72		Nb: 0.34 N: 0.10	670	38	
0.04	0.69	1.73	14.5	24.8	0.75	N: 0.28	760	36	
0.03	0.31	0.78	9.1	25.5	0.67	N: 0.14	800	26	
0.027	0.83	0.87	8.47	22.21	3.21	N: 0.12	830	28	
0.035	0.42	0.80	8.8	25.37	3.14	Cu: 0.49 W: 0.28 N: 0.15	850	20	
0.035	0.34	0.78	8.8	25.35	3.07	Cu: 0.46 W: 2.07 N: 0.25	960	23	
0.06	0.38	0.40		13.2		Nb: 0.87	520*	28*	
0.07	0.38	0.56		16.8		Nb: 0.85	530*	29*	

Note : *PWHT conditions S-410Nb PWHT: 850°C×2h; S-430Nb PWHT; 770°C×2h

g

SMAW

Submerged Arc Welding Materials for Stainless Steel

	g		
Brand Name	Specir	ication	Application and Characteristics
	JIS	AWS	II
Y-308 × BF-300M	☆Z 3324 YWS308	☆A5.9 ER308	Welding of SUS304
1 308 × DF 300M	Welding Position	AWS/ASME F/1G	HF/2F
Y-308L × BF-300M	☆Z 3324 YWS308L	☆A5.9 ER308L	Welding of SUS304L
1 208L × BF 200M	Welding Position	AWS/ASME F/1G	HF/2F
Y-304N × BF-308N2	_	_	Welding of SUS304N2
1 3041N × DF 3081N2	Welding Position	AWS/ASME F/1G	HF/2F
Y-309 × BF-300M	☆Z 3324 YWS309	☆A5.9 ER309	25% Cr-12% Ni weld metal shows extremely high crack resistance due to its high ferrite content.
	Welding Position	AWS/ASME F/1G	HF/2F
V 000 × DE 000E	☆Z 3324 YWS309	☆A5.9 ER309	
$Y-309 \times BF-300F$	Welding Position	AWS/ASME F/1G	HF/2F
Y-316 × BF-300M	☆Z 3324 YWS316	☆A5.9 ER316	Welding of SUS316
$Y-316 \times BF-300F$	Welding Position	AWS/ASME F/1G	HF/2F
Y-316L × BF-300M	☆Z 3324 YWS316L	☆A5.9 ER316L	Welding of SUS316L
$Y-316L \times BF-300F$	Welding Position	AWS/ASME F/1G	HF/2F
Y-316L × BF-29T	_	☆A5.9 ER316L	Welding of SUS316L
	Welding Position	AWS/ASME F/1G	·
Y-347 × BF-300M	☆Z 3324 YWS347	☆A5.9 ER347	Welding of SUS347
	Welding Position	AWS/ASME F/1G	HF/2F
Y-170 × BF-300M		_	Welding of YUS170
1 170 A DF 500M	Welding Position	AWS/ASME F/1G	HF/2F

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Турі		hanical prop weld metal					
С	Si	Mn	Ni	Cr	Mo	Other	TS, MPa	El, %
0.05	0.48	1.95	9.4	20.4	_	_	570	45
0.03	0.47	1.93	10.8	19.7	_	_	550	41
0.07	0.85	3.20	8.0	22.7	_	Nb: 0.09 N: 0.18	715	37
0.06	0.45	1.64	13.5	24.0		_	590	38
0.06	0.49	1.46	9.8	21.7	_	_	640	44
0.05	0.55	1.68	12.6	19.8	2.25	_	600	butt weld
0.03	0.53	1.60	13.3	19.7	2.29	_	570	40
0.033	0.46	1.50	12.6	20.6	2.68	N: 0.117	720	28
0.05	0.55	1.82	10.1	19.9	_	Nb: 0.65	590	38
0.05	0.99	1.68	12.6	25.4	0.81	N: 0.28	740	51

SAW

Submerged Arc Welding Materials for Stainless Steel

Brand Name	Specif	ication	
Brand Name	JIS	AWS	Application and Characteristics
Y-DP8 × BF-30			Welding of SUS329J3L
1 D1 0 × DF 30	Welding Position	AWS/ASME F/1G	HF/2F
Y-DP3 × BF-30	—	—	Welding of SUS329J4L or NAR-DP3
1-DP3 × BF-30	Welding Position	AWS/ASME F/1G	HF/2F
Y-410 × BF-300M	☆Z 3324 YWS410	☆A5.9 ER410	Welding of SUS410
	Welding Position	AWS/ASME F/1G	HF/2F

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Typical chemical compositions of weld metal (%)								hanical prop- weld metal
С	Si	Mn	Ni	Cr	Mo	Other	TS, MPa	El, %
0.035	0.63	0.81	8.2	22.43	3.05	N: 0.11	790	30
0.029	0.50	0.68	8.78	24.90	2.99	Cu: 0.47 W: 0.28 N: 0.14	800	28
0.04	0.56	0.83	_	13.4	_	_	490*	32*

Note : *PWHT condition; Y-410 × BF300M; 730°C×2h

SAW

YM-308

*JIS Z 3321 YS308 *AWS A5.9 ER308

For 18%Cr-8%Ni Stainless Steel

APPLICATIONS

Welding of 18%Cr-8%Ni Stainless Steel for chemical engineering and food processing apparatus.

CHARACTERISTICS

YM-308 is a gas metal arc welding wire to be used with Ar+0.5~2%O₂ shield gas. Arc is stable, bead appearance is beautiful with outstanding edge wetting and weldability is satisfactory. 19%Cr-9%Ni weld metal contains an adequate amount of ferrite and shows excellent resistance to hot cracking.

GUIDELINES FOR USAGE

When high X-ray quality is required, stable spray transfer mode should be maintained with low current and slow welding speed using a pulsed arc power source.

WELDING POSITION

GMAW

*JIS Z 3321 YS309 *AWS A5.9 ER309

For 22%Cr-12%Ni Stainless Steel and Dissimilar Metal

APPLICATIONS

Welding of 22%Cr-12%Ni stainless steel for petroleum, chemical engineering and textile industries, 18%Cr-8%Ni stainless clad steel and dissimilar metals such as mild steel to stainless steel.

CHARACTERISTICS

YM-309 is a gas metal arc welding wire to be used with $Ar+0.5\sim 2\% O_2$ shield gas. Arc is stable, bead appearance is beautiful with outstanding edge wetting and weldability is satisfactory. 24%Cr-13%Ni weld metal contains an adequate amount of ferrite and shows excellent resistance to hot cracking.

GUIDELINES FOR USAGE

- 1. When high X-ray quality is required, stable spray transfer mode should be maintained with low current and slow welding speed using a pulsed arc power source.
- 2. In the welding of dissimilar metals, excessive dilution deteriorates crack and corrosion resistance. Care should be taken for the penetration to base metal.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Cr
0.04	0.34	1.92	0.019	0.002	9.6	19.9

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength,	Elongation,
MPa	%
620	42

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.0	1.2	1.6
Current (A)	70~300	$100 \sim 350$	$120 \sim 350$

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Cr
0.05	0.35	1.74	0.021	0.007	13.3	23.6

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength,	Elongation,
MPa	%
620	32

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.0	1.2	1.6
Current (A)	70~300	$100 \sim 350$	$120 \sim 350$

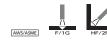
Approval:

YM-316

For 18%Cr-12%Ni-2%Mo Stainless steel

APPLICATIONS

Welding of $18\% {\rm Cr}\mathchar`12\% {\rm Mo}$ Stainless Steel for chemical engineering and power plants.


CHARACTERISTICS

YM-316 is a gas metal arc welding wire to be used with Ar+0.5~2% $\rm O_{_2}$ shield gas. Arc is stable, bead appearance is beautiful with outstanding edge wetting and weldability is satisfactory. 18%Cr-12%Ni-2%Mo weld metal contains an adequate amount of ferrite and shows excellent resistance to hot cracking.

GUIDELINES FOR USAGE

When high X-ray quality is required, stable spray transfer mode should be maintained with low current and slow welding speed using a pulsed arc power source.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Cr	Mo
0.04	0.40	1.48	0.020	0.019	13.5	18.8	2.70

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength,	Elongation,
MPa	%
580	32

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.0	1.2	1.6
Current (A)	70~300	$100 \sim 350$	$120 \sim 350$

214

Gas Metal Arc Welding wires for Stainless Steel

Brand Name	Specif	ication	Dia.	Aralisation and Characteristics			
Brand Name	JIS	AWS	mm	Application and Characteristics			
YM-308L	☆Z 3321 YS308L	☆A5.9 ER308L	$1.0 \\ 1.2 \\ 1.6$	Weld metal shows excellent impact values and sufficient strngth and toughness as welded and after stress relieving annealing.			
	Welding Position	AWS/ASME F/1G	HF	F/2F			
YM-308LSi	☆Z 3321 YS308L- Si	☆A5.9 ER308LSi	$1.0 \\ 1.2 \\ 1.6$	Weld metal shows excellent impact values and sufficient strngth and toughness as welded and after stress relieving annealing.			
	Welding Position	AWS/ASME F/1G	HF	5/2F			
YM-308UL	☆Z 3321 YS308L	☆A5.9 ER308L	1.0 1.2 1.6	Welding of ultra low C type for SUS304L			
	Welding Position	AWS/ASME F/1G	HF	5/2F			
YM-309L	☆Z 3321 YS309L	☆A5.9 ER309L	$1.0 \\ 1.2 \\ 1.6$	Low C type of YM-309			
	Welding Position	AWS/ASME F/1G	HF	7/2F			
YM-309LSi	☆Z 3321 YS309L- Si	☆A5.9 ER309LSi	$1.0 \\ 1.2 \\ 1.6$	Low C and high Si type of YM-309			
	Welding Position	AWS/ASME F/1G	HF	F/2F			
YM-309Mo	☆Z 3321 YS309Mo	☆A5.9 ER309Mo	$1.0 \\ 1.2 \\ 1.6$	Welding of dissimilar metals such as 18%Cr 12%Ni-2%Mo stainless steel to mild steel			
	Welding Position	AWS/ASME F/1G	HF	7/2F			
YM-309MoL	☆Z 3321 YS309LMo	☆A5.9 ER309LMo	1.0 1.2 1.6	Welding of dissimilar metals such as 18%Cr 12%Ni-2%Mo stainless steel to mild steel			
	Welding Position	AWS/ASME F/1G	HF	5/2F			
YM-310	☆Z 3321 YS310	☆A5.9 ER310	$1.0 \\ 1.2 \\ 1.6$	Welding of SUS310			
	Welding Position	AWS/ASME F/1G	HF	/2F			
YM-316L	☆Z 3321 YS316L	☆A5.9 ER316L	$1.0 \\ 1.2 \\ 1.6$	Welding of SUS316L			
	Welding Position	AWS/ASME F/1G	HF	-/2F			

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

		Typical c	hemical co	Typical mechanical properties of weld metal						
-	С	Si	Mn	Ni	Cr	Mo	Other	TS, MPa	El, %	PWHT
	0.025	0.32	1.63	10.3	20.7	_	_	600	43	_
	0.023	0.79	1.96	9.8	19.7	_	_	560	40	_
	0.016	0.42	1.51	10.3	20.5	_	_	520	55	_
	0.014	0.37	1.78	13.7	23.2	_	_	580	36	_
	0.022	0.82	1.81	13.0	23.7	_	_	600	33	_
	0.10	0.38	2.13	13.7	23.2	2.2	_	640	38	_
	0.010	0.35	1.67	13.9	23.7	2.2	_	630	39	_
	0.05	0.33	1.52	21.4	26.1	_	_	590	41	_
	0.025	0.39	1.58	12.7	19.2	2.3	_	570	43	_

GMAW

GMAW

Gas Metal Arc Welding wires for Stainless Steel

Brand Name	Specif	ication		Dia.	Analisation and Characteristics
Brand Name	JIS	AWS		mm	Application and Characteristics
YM-316LSi	☆Z 3321 YS316L- Si	☆A5.9 ER316	LSi	1.0 1.2 1.6	High Si type of YM-316L
	Welding Position	AWS/ASME F	F/1G	HF	:/2F
YM-316UL	☆Z 3321 YS316L	☆A5.9 ER31	6L	$1.0 \\ 1.2 \\ 1.6$	Ultra low C type of YM-316L
	Welding Position	AWS/ASME F	F/1G	HF	72F
YM-317L	☆Z 3321 YS317L	☆A5.9 ER31	7L	1.0 1.2 1.6	Welding of SUS317L
	Welding Position	AWS/ASME F	F/1G	HF	/2F
YM-347	☆Z 3321 YS347	7 ☆A5.9 ER347		$1.0 \\ 1.2 \\ 1.6$	Welding of SUS321 and SUS347
	Welding Position	AWS/ASME F	F/1G	HF	72F
YM-347L	☆Z 3321 YS347L	☆A5.9 ER34	17	1.0 1.2 1.6	Low C type of YM-347
	Welding Position	AWS/ASME F	F/1G	HF	/2F
YM-190	_	_		0.8 1.0 1.2	Welding of NSSC190 and YUS190 (SUS444)
	Welding Position	AWS/ASME F	F/1G	HF	7/2F
YM-410	☆Z 3321 YS410	☆A5.9 ER41	10	$1.2 \\ 1.6$	Welding of SUS410
	Welding Position	AWS/ASME F	F/1G	HF	7/2F
YM-430L	☆Z 3321 YS430	☆A5.9 ER43	30	$1.2 \\ 1.6$	Welding of SUS430 and SUS405
	Welding Position	AWS/ASME F	F/1G	HF	7/2F
YM-160	☆Z 3321 YS430L- Nb	_		1.0 1.2 1.6	Welding of SUS430 and SUS405
	Welding Position	AWS/ASME F	F/1G	HF	:/2F

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typical chemical compositions of weld metal (%)								Typical mechanical properties of weld metal		
С	Si	Mn	Ni	Cr	Mo	Other	TS, MPa	El, %	PWHT		
0.015	0.73	1.79	12.0	19.3	2.4	_	580	44	_		
0.015	0.49	1.32	12.8	18.9	2.6	_	540	50	_		
0.023	0.40	1.55	14.3	19.8	3.4	_	630	38	_		
0.05	0.34	1.50	10.1	19.0	_	Nb: 0.69	630	40	_		
0.030	0.35	1.46	9.5	19.0	_	Nb: 0.65	610	42	_		
0.009	0.10	0.16	_	18.8	1.97	Ti: 0.12 Nb: 0.30	480	13	_		
0.05	0.36	0.30	_	12.8	_	_	570	33	850°C×2h		
0.020	0.32	0.28	_	16.2	_	_	540	26	760°C×2h		
0.010	0.28	0.24	_	16.0	_	Nb: 0.43 Cu: 0.3	470	25	770°C×2h		

GMAW

g

219

GMAW

YT-308L

*JIS Z 3321 YS308L *AWS A5.9 ER308L

For Low Carbon 18%Cr-8%Ni Stainless Steel

APPLICATIONS

Welding of SUS304L type austenitic stainless steel.

CHARACTERISTICS

YT-308L is a Low Carbon-20%Cr-10%Ni wire rod for GTAW

GUIDELINES FOR USAGE

- 1. Pure Argon gas is used for shielding.
- 2. Remove grease and oil from weld zone.
- 3. Avoid excessive heat input in order to obtaining good corrosion resistance with welds.
- 4. Preheat is not necessary, and interpass temperature should be less than $150^{\circ}\mathrm{C}.$

WELDING POSITION

YT-309L

*JIS Z 3321 YS309L *AWS A5.9 ER309L

For Dissimilar Metal such as Stainless Steel and Mild Steel

APPLICATIONS

Welding of clad side of SUS304 class clad steel. Welding of dissimilar metal such as SUS304 type stainless steel.

CHARACTERISTICS

YT-309L is a Low Carbon-24%Cr-13%Ni wire rod for GTAW

GUIDELINES FOR USAGE

- 1. Pure Argon gas is used for shielding
- 2. Remove grease and oil from weld zone.
- 3. Avoid excessive heat input in order to obtaining good corrosion resistance with welds.
- 4. Preheat is not necessary, and interpass temperature should be less than $150^{\circ}\mathrm{C}.$

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

						1	
С	Si	Mn	Р	S	Ni	Cr	Other
0.02	0.40	1.65	0.023	0.000	9.74	19.30	_

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

0.2% Yield Point,	Tensile Strength,	Elongation,
MPa	MPa	%
420	563	43

SIZES

220

Diameter (mm)	1.2, 1.6, 2.0, 2.4
Current (A)	1000

Approval: NK, LR

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Cr	Mo	Cu	Other
0.01	0.45	1.62	0.024	0.002	13.7	23.1	0.05	0.08	—

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

0.2% Yield Point,	Tensile Strength,	Elongation,
MPa	MPa	%
380	585	

SIZES

Diameter (mm)	1.2, 1.6, 2.0, 2.4
Current (A)	1000

Approval:

GTAW

YT-309MoL

*JIS Z 3321 YS309LMo *AWS A5.9 ER309LMo

For Dissimilar Metal such as SUS316L type Stainless Steel and Mild Steel

APPLICATIONS

Welding of clad side of SUS316L class clad steel. Welding of dissimilar metal such as SUS316L type stainless steel.

CHARACTERISTICS

YT-309MoL is a Low Carbon-23%Cr-13%Ni-2%Mo wire rod for GTAW

GUIDELINES FOR USAGE

- 1. Pure Argon gas is used for shielding.
- 2. Remove grease and oil from weld zone.
- 3. Avoid excessive heat input in order to obtaining good corrosion resistance with welds.
- 4. Preheat is not necessary, and interpass temperature should be less than $150^{\rm o}{\rm C}.$

WELDING POSITION

YT-316L

*JIS Z 3321 YS316L *AWS A5.9 ER316L

For Low Carbon 18%Cr - 12%Ni - 2%Mo Stainless Steel

APPLICATIONS

Welding of SUS316L type austenitic stainless steel.

CHARACTERISTICS

YT-316L is a Low Carbon-18%Cr-12%Ni-2%Mo wire rod for GTAW

GUIDELINES FOR USAGE

- 1. Pure Argon gas is used for shielding.
- 2. Remove grease and oil from weld zone.
- 3. Avoid excessive heat input in order to obtaining good corrosion resistance with welds.
- 4. Preheat is not necessary, and interpass temperature should be less than $150^{\circ}\mathrm{C}.$

WELDING POSITION

GTAW

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Cr	Mo	Other
0.017	0.45	1.52	13.6	23.0	2.1	_

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

0.2% Yield Point,	Tensile Strength,	Elongation,
MPa	MPa	%
_	670	34

SIZES

Diameter (mm)	1.2, 1.6, 2.0, 2.4
Current (A)	1000

Approval: NK

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Cr	Mo	Other
0.023	0.40	1.52	12.1	18.3	2.4	—

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

0.2% Yield Point,	Tensile Strength,	Elongation,
MPa	MPa	%
-	590	37

SIZES

Diameter (mm)	1.2, 1.6, 2.0, 2.4
Current (A)	1000

Approval: NK, LR

Gas Tungsten Arc Welding Rods and Wires for Stainless Steel

Brand Name	Specif	ication	Dia.	Analisation and Chanadanistics
Brand Name	JIS	AWS	mm	Application and Characteristics
YT-308	☆Z 3321 YS308	☆A5.9 ER308	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of SUS304
YT-308UL	☆Z 3321 YS308L	☆A5.9 ER308L	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Ultra Low C type of YT·308L
YT-309	☆Z 3321 YS309	☆A5.9 ER309	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of 22%Cr-12%Ni stainless steel (SUS309S), clad side of 18%Cr-8%Ni stainless clad steel and dissimilar joints of stainless steel and mild steel.
YT-309Mo	☆Z 3321 YS309Mo	☆A5.9 ER309Mo	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of dissimilar metals such as 18%Cr·12%Ni·2%Mo stainless steel to mild steel
YT-310	☆Z 3321 YS310	★A5.9 ER310	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of SUS310
YT-316	☆Z 3321 YS316	☆A5.9 ER316	1.2 1.6 2.0 2.4	Welding of SUS316
YT-316UL	☆Z 3321 YS316L	☆A5.9 ER316L	1.2 1.6 2.0 2.4	Ultra Low C type of YT-316L
YT-317L	☆Z 3321 YS317L	☆A5.9 ER317L	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of SUS317L
YT-320	_	☆A5.9 ER320LR	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of Alloy 20Cb3
YT-347	☆Z 3321 YS347	☆A5.9 ER347	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of SUS321 and SUS347
YT-347AP	_		$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of 347AP pipe

	Турі	cal chemica	l compositio	ons of weld	metal (%)		Typical mecl erties of v	nanical prop veld metal
С	Si	Mn	Ni	Cr	Mo	Other	TS, MPa	El, %
0.05	0.35	1.62	10.0	20.2	_	_	650	40
0.013	0.51	1.42	10.0	20.5	_	_	510	58
0.05	0.40	1.65	12.4	23.8	_	_	600	43
0.11	0.38	2.31	13.9	23.4	2.2	_	680	33
0.04	0.35	1.56	21.5	26.9	_	_	600	43
0.04	0.35	1.52	12.2	19.0	2.5	_	620	31
0.015	0.55	1.51	12.6	19.0	2.5	_	530	49
0.014	0.41	1.77	14.1	18.7	3.5	_	520	55
0.004	0.08	1.71	33.6	20.5	2.5	Nb: 0.2 Cu: 3.5	520	55
0.02	0.43	1.79	9.7	19.4	_	Nb: 0.74	670	46
0.027	0.35	1.47	9.4	20.6		Nb: 0.44 N: 0.19	690	36

GTAW

Gas Tungsten Arc Welding Rods and Wires for Stainless Steel

Brand Name	Specification			Application and Characteristics	
branu ivame	JIS	AWS		Application and characteristics	
YT-DP8	☆Z 3321 YS2209	☆A5.9 ER2209	$ \begin{array}{c} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $	Welding of SUS329J3L and UNS S31803	
YT-DP3	_	_	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of SUS329J4L	
YT-DP3W	_	_	$ \begin{array}{c} 1.0 \\ 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $	Welding of Super Duplex Stainless Steel (DP3W tube, NAR-DP3W)	
YT-410	☆Z 3321 YS410	☆A5.9 ER410	$ \begin{array}{r} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $	Welding of SUS410	
YT-430	☆Z 3321 YS430	☆A5.9 ER430	1.2		
YT-430L	☆Z 3321 YS430L	☆A5.9 ER430	1.6 2.0 2.4	Welding of SUS430	
YT-190	_		$ \begin{array}{r} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $	Welding of NSSC 190 and YUS190 (190Cr- 2Mo-Ti, Nb)	
YT-444	_	_	1.2 1.6 2.0 2.4	Welding of SUS444	

	Турі	Typical mechanical prop erties of weld metal						
С	Si	Mn	Ni	Cr	Mo	Other	TS, MPa	El, %
0.007	0.41	1.61	8.4	22.1	3.26	N: 0.10	780	35
0.010	0.37	0.78	9.3	25.3	3.03	W: 0.27 Cu: 0.4 N: 0.17	830	29
0.017	0.42	0.53	9.2	25.7	3.07	W: 2.11 Cu: 0.5 N: 0.28	890	29
0.06	0.38	0.30	_	12.9	_	_	520	33
0.05	0.33	0.37	—	16.8	-	_	530	28
0.01	0.39	0.49	_	16.8	_	_	520	30
0.008	0.09	0.16	_	19.2	1.93	Nb: 0.30 N: 0.011 Ti: 0.13	480	12
0.004	0.02	0.06	0.5	19.0	2.14	Nb: 0.29 N: 0.005 O: 0.002	500	28

Memo

Special Alloy

Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Tungsten Arc Welding Rods and Wires

YAWATA WELD B (M)

JIS Z 3225 D9Ni-1 ☆AWS A5.11 ENiCrFe-4

For 9%Ni Steel

APPLICATIONS

Welding of 9%Ni steel for cryogenic storage tanks for LNG, Liquified nitrogen, etc.

CHARACTERISTICS

YAWATA WELD B(M) is an Inconel type electrode corresponding to INCO-WELD B and is a modified version of YAWATA WELD B for higher strength. Weld metal shows excellent strength and toughness at extremely low temperatures and meets the specifications of API and NV for the welding of 9%Ni steel. With AC, it permits easy operation free from arc blow.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Arc length should be kept as short as possible.
- 3. Crater treatment or grinding off of crater is required.

WELDING POSITION

NITTETSU WELD 196

JIS Z 3225 D9Ni-2 *AWS A5.11 ENiMo-9

For 9%Ni Steel

APPLICATIONS

Welding of 9%Ni steel for cryogenic storage tanks for LNG, Liquified nitrogen, etc.

CHARACTERISTICS

WELD 196 is a Hastelloy type electrode. Weld metal shows excellent strength and toughness at extremely low temperatures and meets the specifications of API and NV for the welding of 9%Ni steel.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Arc length should be kept as short as possible.
- 3. Crater treatment or grinding off of crater is required.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

							<u> </u>			
С	Si	Mn	Р	S	Cu	Fe	Ni	Cr	Nb	Mo
0.09	0.24	3.27	0.008	0.003	0.02	10.4	65.1	15.0	1.56	2.32

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -196°C, J
420	700	40	76

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)	3.2	4.0	5.0	
Length (m	m)	350	350	350	
Current	F	80~100	110~140	140~180	
А	V-up, OH	70~90	100~130	—	

Approval: NK, LR, DNV, CCS

Identification color: End-Purple, secondary-White

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Fe	Ni	Mo	W
0.04	0.35	0.30	0.003	0.002	2.66	73.5	19.2	2.78

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -196°C, J
440	720	51	98

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)	3.2	4.0	5.0	
Length (m	m)	300	350	350	
Current	F	80~100	110~140	140~180	
А	V-up, OH	70~90	100~130	—	

Approval: LR, CCS

Identification color: End-brown, secondary-white

SMAW

Covered Arc Welding Electrodes for Nickel and Nickel Alloy

Brand Name	Specif	ication	Dia.					
Brand Name	JIS	JIS AWS		Application and Characteristics				
YAWATA WELD B	Z 3224 ENi6133	☆A5.11 ENiCrFe•2	2.6 3.2 4.0 5.0	3.2 dization as well as remarkable toughness at extremely4.0 low temperatures. In the welding of dissimilar metals.				
	Welding	Position	AWS/	ASME F/1G HF/2F H/2G OH/4G VU/3G				
YAWATA WELD 182	☆Z 3224 ENi6182	☆A5.11 ENiCrFe-3	2.6 3.2 4.0 5.0	YAWATA WELD 182 is an Inconel type electrode of which weld metal has the same properties as that of INCONEL Welding Electrode 182. It is suitable for welding and surfacing extremely thick plates for nuclear reactor vessels since a slightly high itianium content in weld metal checks the occurrence of blow- holes. For the weldment to be used at high tempera- tures more than 1,000°F(538°C), YAWATA WELD B is recommended because it assures higher strength at high temperatures than YAWATA WELD 182.				
	Welding	Position	AWS/ASME F/1G HF/2F H/2G OH/4G VU/3G					
NITTETSU WELD 112 AC	Z 3224 ENi6625	☆A5.11 ENiCrMo-3	2.6 3.2 4.0 5.0	High strength Inconel type electrode for AC welding of high Ni alloys such as Inconel 625 and dissimilar met- als of various alloys. Weld metal shows high resistance to heat, oxidation and corrosion as well as remarkably high strength.				
	Welding	Position	AWS/	ASME F/1G HF/2F H/2G OH/4G VU/3G				

_
~
< T .
_
ഗ

10

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

AWS/ASME F/1G HF/2F H/2G OH/4G VU/3G VD/3G

	Typical Chemical Compositions of Weld Metal (%)									Typical Mechanical Properties of Weld Metal			
С	Si	Mn	Fe	Ni	Cr	Nb	Mo	Other	YS, MPa	TS, MPa	El, %	Charpy 2V-notch J	
0.06	0.30	2.91	10.1	68.5	16.65	1.69	0.76	Cu: 0.06	380	650	40	-196°C 93	
0.08	0.52	6.85	7.30	68.4	14.2	1.66		Cu: 0.14 Ti: 0.53 Co: 0.03	440	660	44	0°C 130	
0.06	0.38	0.46	4.95	59.2	21.8	3.40	8.90		490	790	43	_	

SMAW

NITTETSU FLUX 10H × NITTETSU FILLER 196

*JIS Z 3333 FS9Ni-H YS9Ni *AWS A5.14 ERNiMo-9

For 9%Ni Steel

APPLICATIONS

Horizontal butt welding of 9%Ni steel for cryogenic storage tanks for LNG, liquefied nitrogen, etc.

CHARACTERISTICS

Hastelloy type weld metal shows high strength and excellent toughness at extremely low temperatures, and meets the requirements of API and NV for 9%Ni steel. Crack resistance is better than INCONEL type wires. Slag is easy to remove, bead appearance and X-ray properties are excellent.

GUIDELINES FOR USAGE

1. Flux should be redried at 300~350°C for 120 minutes before use.

2. DC (+) should be used.

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Fe	Ni	Mo	W	Al	Base Metal	Plate Thick ness mm	Welding Method
0.04	0.45	0.62	0.002	0.001	2.03	73.8	19.8	2.58	0.27	9%Ni steel	19	Flat, Padding

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2 V-notch at -196°C, J	Base Metal	Plate Thickness mm	Welding Method
410	710	50	110	9%Ni steel	19	Flat

■ TYPICAL WELD JOINT TEST

Tensile Test of Weld Metal			Joint Ten		(1 o.1 i l		Plate	
Yield Strength, MPa	Tensile Strength, MPa	Elong- Tensile ation, Strength % MPa		Location of Fracture	Charpy 2 V-notch at -196°C, J	Base Metal	Thick- ness mm	Welding Method
420	690	43	740	Weld metal + Base metal	130	9%Ni steel	30	Horizontal Butt

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Welding Method	Wire Dia. mm	Current, A	Voltage, V	Speed, cm/min	Wire Extension
Hand and a Death	1.6	200~280	27±2	20~60	25 ± 5
Horizontal Butt	2.4	300~380	26±2	30~70	25 ± 5

					Λ	Λ	е	۱	n	C	
_	_	_	_	_	_	_	_	_	_	_	
-	-	-	-	-	-	-	-	-	-	-	

. .

10

Gas Tungsten Arc Welding Rods and Wires for Nickel and Nickel Alloy

	Specifi	ication	D			
Brand Name	JIS	AWS	Dia. mm	Application and Characteristics		
YT-NIC	☆Z 3334 SNi2061	☆A5.14 ERNi-1	$ \begin{array}{c c} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $	Welding for pure Nickel and dissimilar joint		
YAWATA FILLER 82	☆Z 3334 SNi6082	☆A5.14 ERNiCr·3	1.2 1.6 2.0 2.4	Welding of Inconel 600 and Incoloy 800 requiring resistance to heat, oxidation and corrosion, and various combinations of dis- similar metals such as carbon steel, stain- less steel and Ni alloys. Weld metal shows properties similar to INCONEL Filler Met- al 82. In the welding of dissimilar metals, crack resistance is excellent since the coef- ficient of heat expansion is between those of carbon steel and austenitic stainless steel.		
NITTETSU FILLER 196	☆Z3332 YGT9Ni-2	☆A5.14 ERNiMo-9	1.2 1.6 2.0 2.4	Welding of 9%Ni steel to be used at ex- tremely low temperatures for storage tanks for LNG and liquefied nitrogen gas and LNG tankers. Weld metal shows high strength and excel- lent toughness at extremely low tempera- tures, and meets the requirements of API and NV. Crack resistance is also excellent.		
YT-NC718	☆Z 3334 SNi7718	☆A5.14 ERNiFeCr-2	$ \begin{array}{c} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $	Welding of Inconel 718		
NITTETSU FILLER 625	☆Z 3334 SNi6625	☆A5.14 ERNiCrMo•3	1.2 1.6 2.0 2.4	Welding of Inconel 625, 601 and Incoloy 825 requiring resistance to heat, oxidation and corrosion, and Incoloy 825 to various kinds of dissimilar metals. It is also used for surfacing of carbon steel. Weld metal has properties similar to INC ONEL Filler Metal 625 and shows excellent resistance to heat, oxidation and corrosion as well as high fatigue strength.		
YT-HSTC2	☆Z 3334 SNi6276	☆A5.14 ERNiCrMo ⁻ 4	$ \begin{array}{c} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $	Welding of Hastelloy C276		
YT-NC622	☆Z 3334 SNi6022	☆A5.14 ERNiCrMo-10	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of Hastelloy C22		
YT-NC617	☆Z 3334 SNi6617	☆A5.14 ERNiCrCoMo⁻1	$1.2 \\ 1.6 \\ 2.0 \\ 2.4$	Welding of Inconel 617		

ties of Weld	al Proper Ietal		Typical Chemical Compositions of Weld Metal (%)									
Charpy 2V- notch at 0°C J	El, %	TS, MPa	YS, MPa	Other	Fe	Mo	Cr	Ni	Mn	Si	С	
_	41	460	230	Ti: 2.51 Al: 0.15	0.05	_	_	96.0	0.33	0.35	0.001	
150	47	680	410	Co: 0.01 Ti: 0.35 Nb: 2.68	1.50	_	19.7	72.7	3.05	0.11	0.03	
-196°C 160	46	720	420	Cu: 0.75 W: 2.96	1.04	20.2	_	74.7	0.03	0.01	0.02	
_	28	850	520	Nb: 5.2 Cu: 0.10 Al: 0.45 B: 0.001	_	3.1	18.0	53.8	0.08	0.08	0.028	
_	46	790	600	Nb: 3.55 Ti: 0.27 Al: 0.18	2.84	8.96	21.8	61.6	0.08	0.20	0.02	
_	40	770	550	Co: 1.9 Cu: 0.05 W: 3.8 V: 0.2	5.5	15.2	14.8	55.4	0.52	0.01	0.017	
_	40	790	550	Co: 0.09 W: 3.3 V: 0.01	2.3	14.0	20.6	57.5	0.22	0.05	0.009	
_	28	840	520	Ti: 0.3	0.5	9.4	21.3	52.8	0.13	0.11	0.08	

Memo

------_____ ------ - - -

Surfacing Cast Iron

Covered Arc Welding Electrodes

Covered Arc Welding Electrodes for Surfacing

Brand		ication lor	Specifica- tion	Dia.	
Name	End	End Secon- dary JIS mm Application and Chara		Application and Characteristics	
H-250B	Light blue	Red	☆Z 3251 DF2A- 250-R	4.0 5.0 6.0	It is a high titanium oxide type electrode being used widely for surfacingof shafts, gears and crane wheels. Weldability is excellent and bead apearance is beautiful. Weld metal has the hard- ness of about 250 Vickers and is easily machined.
	Welding	Position	AWS/ASME	F/1G	HF/2F H/2G VU/3G
H-250C	Light blue	black	☆Z 3251 DF2A- 250-B	3.2 4.0 5.0 6.0	Surfacing of shafts, rollers, couplings and crane wheels. H 250C is a low hydrogen type electrode with excellent weldability. It is suitable for surfacing worn machine parts since weld metal has the hardness of about 250 Vickers as welded and is easily machined. It also is suitable for deposit ing buffer layer in multi-layer welding due to its high crack resistance.
	Welding	Position	AWS/ASME	F/1G	HF/2F H/2G VU/3G
H-300C	Light blue	Orange	☆Z 3251 4.0 DF2A- 5.0 300-B 6.0		Surfacing of shafts, rollers, spindles, gears and crane wheels H-300C is a low hydrogen type electrode for surfacing machine parts, and carbon steel and cast steel of poor weldability. Weld metal has the hardness of about 300 Vickers as welded and is easily machined. Weldability is excellent.
	Welding	Position	AWS/ASME	F/1G	HF/2F H/2G VU/3G
H-350C	Light blue	White	☆Z 3251 DF2A- 350-B	4.0 5.0 6.0 7.0	Surfacing of shafts, rollers, and bulldozer idlers and sprockets. H·350C is a low hydrogen type electrode for surfacing worn machine parts subjected to high stress abrasion by metal to metal sliding or roll- ing. Weld metal of about 350 Vickers hardness as welded provides reasonable abrasion resistance and is machinable in general.
	Welding	Position	AWS/ASME	F/1G	HF/2F H/2G VU/3G
H-500	Reddish	Blue	☆Z 3251 DF2B- 500-B	$3.2 \\ 4.0 \\ 5.0 \\ 6.0$	Surfacing of track links, bulldozer idlers and bucket lips. H-500 is a low hydrogen type electrode for surfac- ing machine parts which are subjected to metal to metal abrasion or earth and sand abrasion and are used without machining. Weld metal of about 500 Vickers hardness and martensitic structure provides reasonable toughness and stress resist tance to some extent.
	L	l	AWS/ASME		1

С	Si	Mn	Cr	Mo	v	Others	As Welded	After work-hardened	PWHT
0.12	0.43	0.52	0.81	_	_	_	240	_	_
0.13	0.27	0.94	0.65	_	_	_	250	_	500°C 230
0.18	0.83	1.55	0.60	_	_	_	310	_	500°C 285
0.16	0.43	1.32	1.55	_	_	_	355	_	500°C 335
0.34	0.76	1.13	3.06	0.44	_	_	535	_	500°C 495

Typical Chemical Composition of Weld Metal (%)

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

SMAW

11

11

Typical Hardness of Weld Metal (HV)

Covered Arc Welding Electrodes for Surfacing

	11		1	1	1
Brand	Co	ication lor	Specifica- tion	Dia.	Application and Characteristics
Name	End	Secon- dary	JIS	mm	
H-600	Reddish brown	Pink	☆Z 3251 DF2B- 600-B	4.0 5.0 6.0	Surfacing of track rollers, crusher teeth, mill hammers and bucket lips. H+600 is a low hydrogen type electrode for sur- facing worn parts of civil engineering, construc- tion and mining machinery to be used without machining. Weld metal of about 600 Vickers hardness and martensitic structure provides high toughness in spite of high hardness and excellent abrasion resistance to midium impact.
	Welding	Position	AWS/ASME	F/1G	HF/2F VU/3G
H-700	Black	_	☆Z 3251 DF2B- 700-B	4.0 5.0 6.0 7.0	Surfacing of mixers, screw conveyers and casings. H-700 is a low hydrogen type electrode for surfac- ing machine parts which are subjected to heavy impact. Weld metal of about 700 Vickers hardness and martensitic structure provides extremely high abrasion resistance.
	Welding	Position	AWS/ASME	F/1G	HF/2F VU/3G
H-750	Reddish brown	Yellow	☆Z 3251 DF3C- 700-B	4.0 5.0 6.0	It is a low hydrogen type electrode for surfacing civil engineering and construction machine parts which are not subjected to heavy impact. Weld metal of about 750 Vickers hardness and mar- tensitic structure provides stably high hardness and abrasion resistance. Weldability is excellent.
	Welding	Position	AWS/ASME	F/1G	HF/2F VU/3G
H-800	Reddish brown	Purple	☆Z 3251 DF3C- 700-B	4.0 5.0 6.0	Surfacing of dredger pump mouths, impellers, liners and cutter knives. H-800 is a low hydrogen type electrode to give extremely hard weld metal due to dispersedly precipitated borides and carbides. Although it is not suitable for impact abrasion since weld metal tends to crack, it shows excellent resistance to earth and sand abrasion.
	Welding	Position	AWS/ASME	F/1G	HF/2F
H-13Cr	Reddish brown	Black	☆Z 3251 DF4B- 350-B	4.0 5.0	Surfacing of hammer mills. roll crushers. hot trimming dies, roll dies and forging benches sub- jected to high temperature abrasion. Weld metal has chmeical composition similar to tool steel SKD11 and the hardness of about 350 Vickers as welded and 500-600 Vickers after work hardened. It also is suitable for parts subjected to medium impact abrasion at high temperatures since weld
					metal is resistant to comparatively high heat.

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typical C	hemical C	Typical Hardness of Weld Metal (HV)						
С	Si	Mn	Cr	Mo	Others	As Welded	After work-hardened	PWHT	
0.45	0.50	1.15	3.95	0.60	_	_	625	_	500°C 605
0.64	0.90	1.23	2.58	_	0.72	_	710	_	_
0.69	0.99	0.35	5.83	_	1.71	_	765	_	_
0.82	1.28	1.10	8.26	0.52	_	B: 0.45	815	_	_
1.21	0.34	0.30	13.3	0.50	_	_	360	520	-

11

SMAW

Covered Arc Welding Electrodes for Surfacing

	5							
Brand		ication lor	Specifica- tion	Dia.	Application and Characteristics			
Name	End	Secon- dary	JIS	mm	Application and Characteristics			
H-13M	Reddish brown	Brown	☆Z 3251 DFMA- 250-B	4.0 5.0 6.0	Filling up cavities of high manganese cast stee and surfacing of parts subjected to impact abra sion such as boring mills. Weld metal of austen itic structure has chemical composition similar to high manganese cast steel SCMnH2 and the hardness of about 250-300 Vickers as welded Hardness goes up to 450-550 Vickers after work hardened and improves abrasion resistance re markably.			
	Welding	Position	AWS/ASME	F/1G	HF/2F			
H-13MN	Reddish brown White		☆Z 3251 DFMB- 250-B	4.0 5.0	Filling up cavities of high manganese cast stee and surfacing of parts subjected to impact abra sion such as boring mills. Weld metal has the hardness of about 200~250 Vickers as welder and is work hardened to 450~550 Vickers, like H 13CrM, but toughness and crack resistance are better since it contains Ni.			
-	Welding	Position	AWS/ASME	F/1G	HF/2F			
H-13CrM	Reddish brown	Brown	_	4.0 5.0	Surfacing of hot roll dies, tongue punches and hot shears subjected to impact abrasion at high temperataures. Weld metal of austenitic struc ture with finely precipitated carbide has high hardness at temperatures of more than 600°C showing high resistance to abrasion under high temperatures.			
	Welding	Position	AWS/ASME	F/1G	HF/2F VU/3G			
H-MCr	Light —		☆Z 3251 DFME- 250-B	4.0 5.0 6.0	Joining of high manganese steel and carbon s and surfacing of hot shears, forging molds, rolls and dies subjected to impact abrasion high temperatures. Weld metal of Mn-Cr t austenitic structure is hardened by impact shows excellent toughness and resistance to al sion under high temperatures and impact.			
					sion under high temperatures and impact.			
-	Welding	Position	AWS/ASME	F/1G				
H-11Cr	Welding	Position —	(AWS/ASME) ☆Z 3251 DF4A- 500-B	F/1G 3.2 4.0 5.0	sion under high temperatures and impact.			

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typical C	hemical C	ompositio	n of Weld	Metal (%)		Typical Hardness of Weld Metal (HV)			
С	Si	Mn	Cr	Mo	v	Others	As Welded	After work-hardened	PWHT	
0.49	0.16	13.9	_	_	_	_	280	540	_	
0.90	0.26	12.61	_	_	_	Ni: 5.60	235	510	_	
0.19	0.51	12.16	13.71	1.56	1.13	Ni: 2.45 W: 3.45	295	_	700°C 160	
0.11	0.58	15.55	15.11	_	_	Ni: 2.45	215	490	_	
0.21	0.40	1.26	11.85	_	_	_	540	_	_	

11

SMAW

Covered Arc Welding Electrodes for Surfacing

Brand		ication lor	Specifica- tion	Dia.	Application and Characteristics		
Name	End	Secon- dary	JIS	mm	Application and Characteristics		
H-30Cr	Reddish brown Gray		☆Z 3251 DFCrA -700-BR	4.0 5.0	Surfacing of coal crushers, mixer blades, mixer arms, sand pump casings, impellers and boring tools subjected to heavy earth and sand abrasion. Weld metal of martensitic type high chromium iron is very hard due to the precipitation of chrome carbide, and shows extremely high resis- tance, although cracks occur, to low stress abra- sion of earth and sand.		
	Welding	Position	AWS/ASME	F/1G	HF/2F		
H-30CrM	Reddish brown		☆Z 3251 DFCrA -700-BR	4.0 5.0	Surfacing of mixer blades, sand blast blades, bell hoppers, impeller breakers, pump casings, impel- lers and sintered ore chuting boards subject to heavy earth and sand abrasion and ore abrasion under high temperatures. Weld metal of aus- tenitic type high chromium iron containing 5% manganese in addition to chrome carbide shows excellent resistance to abrasion under high tem- peratures because thermal change of hardness is smaller than taht of H-30Cr.		
	Welding	Position	AWS/ASME	F/1G	HF/2F		

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typical C	hemical C	ompositio	Typical Hardness of Weld Metal (HV)					
С	Si	Mn	Cr	Cr Mo V Others		As Welded	As Welded After work-hardened		
3.55	0.96	110	31.90	_	_	_	705	_	_
3.62	0.48	5.91	31.80	_	_	_	620	_	_

Covered Arc Welding Electrodes for Cast Iron

Brand		ication lor	Specif	ication	Dia.	Application and Characteristics	
Name	End	Secon- dary	JIS	AWS	mm		
C-1N	Gold	Red	☆Z3252 ECNi-CI	★A5.15 ENi-CI	3.2 4.0 5.0	Welding and filling up of cavities of cast iron products. C·IN is a graphite type electrode with a pure nickel core wire. Weld metal is not so hard and is easily machined. Arc is stable and slag is easy to remove. No preheating is required in general.	
C-1N	Welding	Position	AWS/ASME F/1G		HF/2F		
C-5N	Gold	Light purple	☆Z3252 ECNiFe-CI	☆A5.15 ENiFe-CI	3.2 4.0 5.0	Welding of normal cast irons and ductile cast irons. C-5N is a graphite type electrode. With Fe-Ni wire. Weld metal shows excellent mechanical properties and crack resistance.	
	Welding	Position	AWS/ASME	F/1G	HF/2F		

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

С	Si	Mn	Р	S	Ni	
1.00	0.71	1.14	0.002	0.001	95.8	
0.90	0.35	0.56	0.005	0.004	55.1	

Typical Chemical Composition of Weld Metal (%)

FCM-132M FCM-134 FCM-134M

*JIS Z 3326 YF4A-G-400 *JIS Z 3326 YF4A-G-400 *JIS Z 3326 YF4A-G-400

For Hardfacing

APPLICATIONS

These metal-based flux cored wires provide highly efficient hardfacing and repair welding. FCM-132M, FCM-134, and FCM-134M wires with shielding gas such as Ar or Ar-20%CO₂ respectively produce 13Cr-2Ni-1 Mo-based, 13Cr-4Ni-based, and 13Cr-4Ni-1Mo based deposited metal.

CHARACTERISTICS

Hardfacing and repair welding on turbine runners, turbine blades, valves, valve seats, rolls, rollers, etc.

GUIDELINES FOR USAGE

- 1. NSSW FCM-132M, NSSW FCM-134, and NSSW FCM-134M wires are used with Ar or 80%+20% CO₂ as the shielding gas.
- 2. As a general, it is required preheating at a temperature higher than 150 to 300°C and slow cooling after welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Brand name	С	Si	Mn	Ni	Cr	Mo
FCM-132M	0.07	0.40	0.74	2.09	12.7	1.06
FCM-134	0.07	0.38	0.57	3.96	12.5	-
FCM-134M	0.06	0.36	0.56	3.88	11.6	0.98

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Brand name	Tensile Strength,	Elongation, %	Charpy 2V-notch at 20°C,	Typical Hardness of Weld Metal (Hv)		
	MPa	70	J	As Weld	PWHT 600°Cx2.5h	
FCM-132M	900	17	22	420	290	
FCM-134	900	16	18	420	300	
FCM-134M	910	17	33	400	305	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter	(mm)	1.6
Current	F	200~350

Electroslag Welding Materials -SESNET WELDING-

Electroslag Welding Materials for SESNET WELDING PROCESS

Brand	Specification JIS AWS				
Name			Application and Characteristics		
YM-55S × YF-15I	☆Z 3353 YES501-S/ FES•Z	_	Welding of 490MPa high tensile strength steel for diaphragm of steel frames in SESNET welding process.		
YM-60E × YF-15I	☆Z 3353 YES602-S/ FES-Z	_	Welding of 590MPa high tensile strength steel for diaphragm of steel frames in SESNET welding process.		

Typic	Typical Chemical Composition of Deosited Metal %							lechanical Me			
С	Si	Mn	Ni	Р	s	Mo	Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2 V-notch at 0°C, J	Remarks
0.11	0.20	1.45	_	0.010	0.004	0.13	400	560	30	54	SN490B 40 mm 1 electrode
0.09	0.34	1.29	1.02	_	_	0.29	460	690	25	80	SM570Q 50 mm 1 electrode

Memo

_____ ------- - - -

Electrogas Welding Materials -VEGA WELDING-

Flux Cored Arc Welding Wires

Flux Cored Arc Welding Wires for Electrogas Welding -VEGA WELDING-

Brand	Shield	Specif	ication	Dia.	Application and Characteristics			
Name	Gas	JIS	AWS	mm	Application and Unaracteristics			
EG-1	$\rm CO_2$	☆Z 3319 YFEG-21C	_	1.6	VEGA welding wire to be used with CO_z shield gas for mild steel and 490MPa high tensile strength steel. Arc is stable and bead appear- ance is beautiful.			
	Weldi	ng Position	AWS/ASME VU/3G					
EG-3	CO_2	_	☆A5.26 EG72T G	1.6	VEGA welding wire to be used with CO_z shield gas for mild steel and 490MPa high tensile strength steel. It can be used also for ship- building grade E steel since weld metal shows excellent mechanical properties.			
	Weldi	ng Position	AWS/ASME VU	I/3G				
EG-60	CO_2	☆Z 3319 YFEG-32C	_	1.6	VEGA welding wire to be used with CO ₂ gas shield for 590MPa high tensile strength steel.			
	Weldin	ng Position	AWS/ASME VU	AWS/ASME VU/3G				

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

	Typic	cal Che		Compos ld Meta			Ту	Typical Mechanical Properties of Weld Metal					
С	Si	Mn	Р	s	Mo	Ni	Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2 V-notch at 0°C, J	of Current		
0.08	0.29	1.49	0.014	0.015	0.24	-	470	640	28	59	DC (+)		
0.04	0.35	1.54	0.012	0.016	0.14	0.64	509	606	25	−20°C 99	DC (+)		
0.10	0.34	1.68	0.014	0.012	0.11	-	495	650	29	−20°C 89	DC (+)		

13

<u>Memo</u>

High Efficiency Welding Process

SUBNAP WELDING PROCESS

High Quality and Low Cost Welding Process for Heavy Steel Plates

SUBNAP Welding Process is a narrow gap submerged arc welding process for the heavy plates and has the following characteristics.

CHARACTERISTICS

- 1. It is possible to shorten welding time, save welding materials and greatly reduce welding costs.
- 2. Any submerged arc welding machine and power source at hand can be used by just changing the nozzle to a long tip of $8\sim10$ mm diameter or a rectangular cross sectional nozzle of $8\sim10$ mm width covered by heat proof insulating tape or a tube.
- 3. Mechanical properties of weld metal are the same or better than those of conventional submerged arc welding process.
- 4. High efficiency and better bead appearance are obtained by applying tandem welding with a short distance between electrodes of 7~13mm.
- 5. Gas cut grooves can be welded.

WELDING MATERIALS

Base metal	Wire	Flux	Characteristics of Flux		
ASTM A516 Gr60, 65, 70	Y-D				
ASTM A516 Gr70 ASTM A537 Cℓ1 ASTM A299	Y-E Y-DM3	NF-1	Neutral type fused flux High wire melting speed		
ASTM A533B, A302B	Y-204	NF-250			
ASTM A387Gr11, 12, Cℓ 1, Cℓ 2	Y-511	NF-250*	Basic type fused flux		
ACTM A 2070-20 011 012	Y-521	NF-250	Basic type fused nux		
ASTM A387Gr22, Cℓ 1, Cℓ 2	Y-521H	NB-250M			
SUS304, SUS304L	Y-308	BF-350	D		
	Y-308L	066-10	Basic type bonded flux		

* M Type

■ STANDARD WELDING CONDITIONS FOR ONE-LAYER TWO-PASS SUBNAP WELDING PROCESS

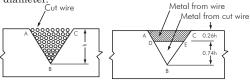
Groove	Number	Wire			Elec-	Weldi	ng Cond	itions		
Geometry mm	of Electrode	Dia. mm	.9 VOP		trode	Current	Voltage	Speed		
	Electrode	mm				A	V	cm/min		
2°			B.P	1 (1-pass)		500	27 (32)	25		
	AC	4.0	D,I	$2 \rightarrow \text{Final} \ (2\text{-}\text{pass})$	Single	600	28 (33)	30		
	Single	4.0	F.P	1 (1-pass)	Single	500	27 (32)	25		
			r.r	$2 \rightarrow \text{Final} \ (2\text{-}\text{pass})$		600	28 (33)	30		
	AC·AC Tandem	3.2 -	B.P F.P	1 (1-pass)	Single	500	27 (32)	25		
- 00						$2 \rightarrow \text{Final}(2\text{-pass})$	L	500	27 (29)	50 (55)
				$2 \rightarrow Final (2 \text{-pass})$	Т	500	27 (29)	ə0 (əə)		
8 ^R 1 9				1 (1-pass)	Single	500	27 (32)	25		
2° F.P				F.P $2 \rightarrow \text{Final}(2\text{-pass})$	L	500	27 (29)	50 (55)		
1-11				2 → rmai (2 pass)	Т	500	27 (29)	50 (55)		

Note: 1. Voltage and speed in () are for NF-1 and others for NF-250.

- 2. Distance between electrodes for tandem welding is 10mm.
- 3. Suitable wire center position for two-pass welding is 5~6mm from groove side wall.

STANDARD WELDING CONDITIONS FOR STAINLESS STEEL SUBNAP WELDING PROCESS

Groove	Wire Dia.		Welding Conditions			
Geometry mm	mm	Layer	Layer Pass		Voltage V	Speed cm/min
		1-layer 2-pass	1	450	32	45
	4.0		2~3	500	32	40
			$4 \rightarrow \text{Final}$	550	32	35

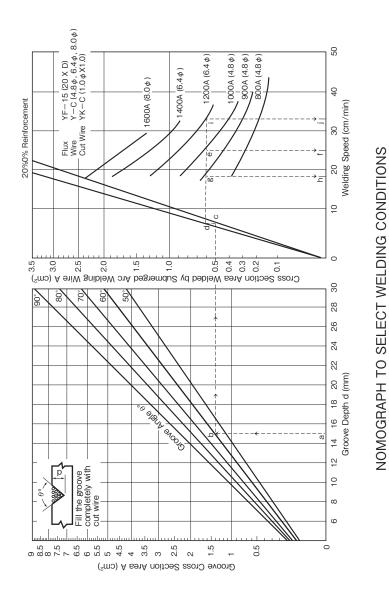

Note: Flux; BF-350

••• WELDING PROCESS

CUT WIRE SUBMERGED ARC WELDING PROCESS

High Efficiency Submerged Arc Welding Using Cut Wire

Cut Wire Submerged Arc Welding Process is to carry out submerged arc welding with high efficiency by filling the groove with "cut wire", fine wires of the same chemical composition as submerged arc welding wire chopped to almost the same length as wire diameter.



TYPE OF CUT WIRES

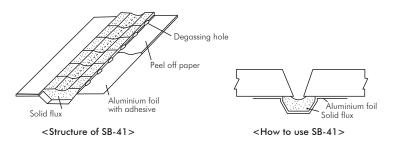
Brand Name	Тур	ical C	hemica	al Com	Flux to be used				
brand Name	С	Si	Mn	Р	S	Others	(mesh)		
ҮК-С	0.11	0.01	1.43	0.013	0.015	_	YF-15A (20×D)		
YK-D	0.13	0.01	1.87	0.010	0.014	_	YF-15A (20×D) NB-55E (12×100)		
YK-CM	0.08	0.01	1.67	0.012	0.014	Mo:0.51	YF-15 (20×D)		
YK-CNC	0.11	0.07	1.69	0.011	0.002	Cu:0.23 Ni:0.10 Cr:0.45	YF-15B (20×D)		
YK-3NI	0.04	0.02	1.20	0.007	0.003	Ni:2.98	NB-55LM		

CHARACTERISTICS

- 1. More than double amount of weld metal compared with conventional submerged arc welding is obtained and it is especially suitable for welding thick plates.
- 2. Heat affected zone of the base metal is small and consequently deterioration of toughness is limited.
- 3. Beautiful bead with large leg length is obtained in flat fillet welding and slag is easy to remove.
- 4. Hot temperature cracking can be prevented in the welding of high carbon steel since dilution rate of base metal is low.
- $5.\ {\rm Arc}$ is stable and bead is beautiful even in high current welding.

••• WELDING PROCESS

ONE-SIDE WELDING PROCESS


One-side Welding Process to Shorten	Weldina Time	Usina Various Kinds of	Backina Materials

Welding F	Backing Materials and Flux		
Gas shield arc weldin welding wires and Gas me	SB-41		
Submerged arc welding	Soft Backing Process	SB-51	
	Flux Copper	Surface flux	NSH-50M
	Backing Process		NSH-55EM
	(FCuB Process)	Backing flux	NSH-1RM

SB-41

Backing Material for Gas Shield Arc One-side Welding

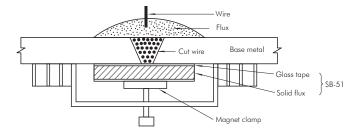
SB-41 is a backing material having a structure of tile-like solid flux blocks which are stuck onto aluminium foil in succession.

■ RECOMMENDED WELDING WIRES

Flux cored arc welding wires	SF-1, SF-3, etc.
Gas metal arc welding wires	YM-26, YM-28, etc.

APPLICATIONS

- It is small and light and consequently is easily set up by sticking adhesive face of aluminium foil to steel plate.
 It can be used by cutting to the desired length and bending up or down since solid fluxes are tile-like and flexible.
- 3. It can be used for uranami (sound penetration bead) welding with a wide range of welding conditions since solid fluxes have high fire resistance.
- 4. Inventory control is easy since it rarely absorb moisture and, therefore, redrying is not necessary.


■ SIZE AND SHAPE

	Width × Length		icable ire				
Туре	(Groove Depth × Width)	Flux Cored Wire	Solid Wire	Purpose	Shape	How to Use	
Standard	30×600 (1.2×12)	0	0	General purpose	610 25 Degassing hole		
В	26×600 (0.8×9)		0	General purpose	Joint ¹²⁸ Aluminium foil with adhesive		
GA	30×600 (1.2×12)	0	0	General purpose	The same as above • With glass tape	The same as above	
Н	30×150R (1.5×12)	0		Different plate thickness	Aluminium foil 100 9.5 11.5 5	Aluminium	
R	30×100R 30×150R 30×200R 30×250R 30×300R (1.5×14)	0		Circular Plates		S B - 41 (R S B - 41 (R S B - 41 0 S B - 41 (R	
LL	30×87×18R (1.2×12)	0		L longitudinals	Auminum foil with odhesive	S B - 41	
K	20×350	0		T joints	Aluminum foil with adhesive		

Backing Materials

SOFT BACKING SUBMERGED ARC WELDING PROCESS

Soft Backing Process is to carry out one-side submerged arc welding by fitting SB-51, portable and light backing material, to a steel plate using magnet clamps as shown in the figure. Welding is carried out by filling the groove with cut wires in order to minimize the influence of groove gap fluctuation onto the shape of reverse head.

APPLICATIONS

One-side welding where backing jigs cannot be used like welding of curved plates in shipbuilding and site welding of bridges.

CHARACTERISTICS

- $1.\ {\rm Glass}$ tape assures excellent adhesiveness to base metal and an even reverse bead.
- It can be attached by magnet clamps since little push-up strength is required.
 An even reverse bead shape similar to other parts is obtained at joining parts
- An even reverse bead shape similar to other parts is obtained at joining parts of backing materials.
- 4. The concurrent use of cut wire makes it unsusceptible to the fluctuation of groove gap and assures high efficiency.

■ RECOMMENDED WELDING MATERIALS

Base metal	Welding Process Flux W		Wire	Cute Wire
Mild steel	1 layer welding	YF-15A	Y-D	
	2 electrodes Multi- layer welding	NSH-50M $\begin{array}{c} L : Y-C \\ T : Y-DL \end{array}$		YK-C
	11 11	NB-55E	Y-D	YK-D
490MPa	1 layer welding	YF-15A	Y-D	
high tensile strength steel	2 electrodes Multi- layer welding NSH-50M L: Y-DL T: Y-DL Y		YK-D	

TYPICAL WELDING CONDITIONS 1) ONE-LAYER WELDING (NB-55E)(AC)

Plate Thickness mm	Groove Shape	Wire Dia mm	Groove Gap mm	Cut Wire Height mm	Current A	Voltage V	Speed cm/min
0	Ι	4.8	0	-	800	32	45
8		4.0	3	-	700	32	42
16	50°V	6.4	0	16	1100	36	30

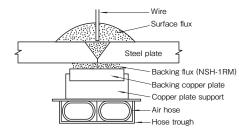
2) MULTI-LAYER WELDING WITH TWO ELECTRODES (AC)

Plate Thick ness mm	- Groove Geometry	Layer	Electrode	Wire Dia mm	Cut Wire Height mm	Current A	Voltage V	Speed cm/min	Distance between Electrodes mm
16		1	L T	4.8 6.4	16	900 800	$36 \\ 40$	46	70
25	K ^{45°}	1	L T	4.8 4.8	15	980 700	$\frac{34}{38}$	34	70
20		2	L T	$4.8 \\ 4.8$	0	$750 \\ 700$	$\frac{36}{38}$	36	30

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	С	Si	Mn	Р	s	Base Metal	Plate Thickness mm	Welding Method	Flux
1)	0.14	0.25	0.96	0.014	0.005	KD	16	1 layer welding	NB-55E
2)	0.12	0.31	1.35	0.020	0.008	K32D	25	2 electrodes, 2 layers welding	NSH-50M

TYPICAL MECHANICAL PROPERTIES OF WELD METAL


	Yield Point, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2 V-notch at 0°C, J	Base Metal	Plate Thickness mm	Welding Method	Flux
1)	330	460	39	130	KD	16	1 layer welding	NB-55E
2)	430	540	31	88	K32D	25	2 electrodes, 2 layers welding	NSH-50M

••• WELDING PROCESS

FLUX COPPER BACKING SUBMERGED ARC WELDING PROCESS

Flux Copper Backing Process is a high efficiency automatic welding process to carry out one-side submerged arc welding by spreading backing flux (NSH-1RM) to the thickness of a few millimeters on backing copper plates, as shown in the figure, and sticking the copper plate closely to the reverse surface of the groove using a pushing up device. High speed and high efficiency welding is achieved by using a pushing up device. High speed and high efficiency welding is achieved by using a systematized welding apparatus.

Especially, NH-HISAW Process with 4 electrodes can increase welding speed as much as 2.5 times high as conventional submerged arc welding process.

APPLICATIONS

Welding of large plates for ships, bridges and structures.

CHARACTERISTICS

- 1. High current can be used since reverse bead height tends to be even due to the copper plate under backing flux layer and fluctuation of reverse bead shape is small.
- 2. Highly efficient and economic welding is possible by systematizing welding apparatus.
- 3. NSH-50M, surface flux, can be used for both mild steel and 490MPa high tensile strength steel.

One-side SAW Welding Material

	ang malonal		
Base metal	Wire	Surface Flux	Backing Flux
Mild Steel and 490MPa high tensile strength Steel	Y-DL	NSH-50M	NSH-1RM
490MPa Grade E high tensile strength Steel	Y-DM3 Y-DL	NSH-55EM	NSH-1RM
Low temperature Service Steel	Y-3NI	NSH-55L	NSH-1RM

■ TYPICAL WELDING CONDITIONS (3 ELECTRODES)

Flux	Plate Thick- ness mm	Groove Geometry mm	Electrode	Wire Dia. mm	Electrode Tilt Angle	Current A	Voltage V	Speed cm/min	Distance Between Electrodes mm	Backing Flux Height mm
RM	16		$egin{array}{c} L \ T_1 \ T_2 \end{array}$	4.8 4.8 6.4	-15 0 5	$1250 \\ 1000 \\ 850$	$35 \\ 40 \\ 45$	83	35 120	5~6
5ENM × NSH-1	20		$egin{array}{c} L \ T_1 \ T_2 \end{array}$	4.8 4.8 6.4	-15 0 5	$1350 \\ 1100 \\ 900$	36 40 45	68	35 120	5~6
NSH-50M or NSH-55ENM × NSH-1RM	25		$egin{array}{c} L \ T_1 \ T_2 \end{array}$	4.8 4.8 6.4	-15 0 5	$1450 \\ 1250 \\ 1000$	36 40 45	56	35 120	5~6
HSN	36		$egin{array}{c} L \ T_1 \ T_2 \end{array}$	4.8 4.8 6.4	$-15 \\ 0 \\ 5$	$1450 \\ 1250 \\ 1250$	$35 \\ 40 \\ 45$	37	35 120	5~6

Note: NSH-55M is used for three-electrode welding in principle.

■ TYPICAL WELDING CONDITIONS (4 ELECTRODES)

Flux	Plate Thick- ness mm	Groove Geometry mm	Electrode	Wire Dia. mm	Electrode Tilt Angle	Current A	Voltage V	Speed cm/min	Distance Between Electrodes mm	Backing Flux Height mm	
	16		$egin{array}{c} L \ T_1 \ T_2 \end{array}$	4.8 6.4 6.4	-15 0 -5	1700 1300 750	$35 \\ 40 \\ 40$	150	30 200 30	5~6	
			T ₃	6.4	10	700	45				
IRM	20		$\begin{array}{c} L \\ T_1 \end{array}$	4.8 6.4	-15 0	$1700 \\ 1400$	$35 \\ 40$	100	30 200	5~6	
NSH-50M × NSH-1RM	20		T_2 T_3	6.4 6.4	-5 10	750 750	40 45	100	30	5.0	
I × I			L	4.8	-15	1700	35		30		
H-50]	25	1	T_1 T_2	6.4 6.4	$0 \\ -5$	1400 1050	40 40	90	200	5~6	
NS			T_2 T_3	6.4	10	950	40		30		
		→ 45° /	L	4.8	-15	1700	35		30		
	36		T_1 T_2	6.4 6.4	$\begin{bmatrix} 0 \\ -5 \end{bmatrix}$	$1400 \\ 1300$	40 40	55	200	5~6	
		36		T ₃	6.4	10	1200	45		30	

••• WELDING PROCESS

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%) 1) NSH-50M × NSH-1RM × Y-DL/Y-DL/Y-DL (3 ELECTRODES)

С	Si	Mn	Р	s	Base Metal	Plate Thickness mm	Welding Method
0.13	0.23	1.17	0.018	0.004	KD36	20	3 electrodes, one-side welding

2) NSH-55EM × NSH-1RM × Y-DM3/Y-DL/

Y-DL (3 ELECTRODES)

С	Si	Mn	Р	S	Base Metal	Plate Thickness mm	Welding Method
0.09	0.18	1.32	0.018	0.005	KE40	20	3 electrodes, one-side welding

3) NSH-50M × NSH-1RM × Y-DL/Y-DL/Y-DL/Y-DL (4 ELECTRODES)

С	Si	Mn	Р	S	Base Metal	Plate Thickness mm	Welding Method
0.12	0.20	1.15	0.019	0.005	KD36	20	4 electrodes, one-side welding

TYPICAL MECHANICAL PROPERTIES OF WELD METAL 1) NSH-50M × NSH-1RM × Y-DL/Y-DL/Y-DL (3 ELECTRODES)

Yield Point, MPa	Tensile Strength, MPa	Elonga [.] tion, %	Charpy 2 V-notch at 0°C, J	Base Metal	Plate Thickness mm	Welding Method
460	550	27	135	KD36	20	3 electrodes, one-side welding

2) NSH-55EM × NSH-1RM × Y-DM3/Y-DL/ Y-DL (3 ELECTRODES)

Yield Point, MPa	Tensile Strength, MPa	Elonga [.] tion, %	$\begin{array}{c} { m Charpy2V} \mbox{-notch} \\ { m at}-20^{\circ}{ m C}, \\ { m J} \end{array}$	Base Metal	Plate Thickness mm	Welding Method
490	570	25	120	KE40	20	3 electrodes, one-side welding

3) NSH-50M × NSH-1RM × Y-DL/Y-DL/Y-DL/Y-DL (4 ELECTRODES)

Yield Point, MPa	Tensile Strength, MPa	Elonga [.] tion, %	${{\rm Charpy2V}{ m notch}\over { m at-20^{\circ}C,} J}$	Base Metal	Plate Thickness mm	Welding Method
470	550	26	120	KD36	20	4 electrodes, one-side welding

Welding Machine and Equipment Plasma Machine and Equipment

Fillet Welding

Simplified Travelling Carriage with Various Models

It is necessary to support the weight of the welding torch and maintain wire target position correctly in order to obtain an excellent welding bead in semiautomatic welding. This requires a skilled welder, Carriage hold the welding torch for welding operators and carry out stable welding by travelling and tracking vertical plate by itself. It solves at a stroke, therefore, the problems of welding fatigue and skill required for high quality welding. Carriage are small and convenient welding carriages and there are various types for different purposes and applications. One operator can handle several machines at a time increasing operational efficiency per operator.

APPLICATIONS

Automatization of welding of ships, steel frames, bridges, etc.

CHARACTERISTICS

- 1. Putting stress on portability. Travelling is stable in horizontal fillet welding of even inclined or curved plates since, while the four-wheel carriages travel.
- 2. Little skilled welding technique is required since they travel stably tracking along the vertical plate.
- 3. They are small, light and easy to handle and, therefore, can be used for a wide range of applications.
- 4. Due to an automatic stop mechanism, one operator can handle several Carriage simultaneously assuring high efficiency and labor saving.

■ RECOMMENDED WELDING WIRES

Base metal	Brand Name	Type of Wire	
Mild Steel and 490MPa High Tensile Strength Steel	SF-1 SF-1F SM-1F	Seamless Flux Cored Arc Welding Wire	
	YM-26 YM-28	Gas Metal Arc Welding Wire	

TYPICAL FILLET WELDING CONDITIONS OF SF-1

	Wire Dia.	Leg Length	Welding Conditions		
Position	mm	mm	Current A	Voltage V	Speed cm/min
		4	220	27	70
	1.2	6	270	29	50
		8	300	30	35
	1.4	4		28	70
Horizontal fillet		6	320	31	50
		8	350	33	35
	1.6	4	300	29	80
		6	350	32	50
		8	400	34	35
	1.2	6	280	29	50
Flat fillet	1.2	8	280	29	40
	1.4	14	380	38	20~23

Carry Boy • Ace

Multipurpose welding torch Carry for fillet welding.

FEATURES

- 1. Strong electromagnetic attraction provides high pulling power and stable traveling performance even on inclines.
- 2. A multipurpose semi-automatic welding torch can be attached.
- 3. The wire aiming position can be freely adjusted up/down, front/back, torch angle, forward/return angles, etc.
- 4. The range of the aiming position can be unlimited by replacing the parts of the torch handle and following arm

Standard specifications

Applicable position	Horizontal fillet welding, Flat fillet welding
Weight	Approx.12kg
Drive system	Rubber carried 4-wheel drive combined with electromagnetic absorption
Torch setting adjustment	Vertical: 40mm, horizontal: 35mm; forward/reverse: ±5°
Torch angle adjustment	30° to 50°
Automatic stop function	Limit switch for forward direction
Traveling speed range	10 to 120cm/min
Operation functions	Power switch, carriage traveling dimensions switch, Start/stop switch, travel/welding switch, traveling speed adjustment switch, welding switch
Input voltage	AC100V±10% 50/60Hz
External dimensions(mm)	250(W)×400(L)×240(H)

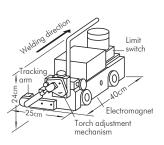
*There are two different torch models in symmetrical shapes. One for welding at right side of the main unit, one for welding at left side. (the photo shows a leftside model)

NS Carry Auto Super IR

Planned to be released

Compact, lightweight carriage for fillet welding

FEATURES


- 1. Simple dolly with excellent cost performance(in-house comparison)
- 2. Compact and lightweight(Approx.8kg)
- 3. High pulling power is achieved using the strong permanent magnet
- 4. Welding position can be easily set

Standard Specifications

Applicable position	Horizontal fillet welding
Weight	Approx.8kg
Drive system	$4\ {\rm rubber}$ wheel drive with built-in permanent magnets and ON/OFF function
Torch setting adjustment	Vertical: 40mm, horizontal: 40mm
Torch angle adjustment	45°±5°
Automatic stop function	Limit switch for both directions
Traveling speed range	13 to 90cm/min
Operation functions	Start/stop switch, travel/welding change-over switch, right/left travel direction selector switch, speed adjustment knob
Input voltage	AC100V±10% 50/60Hz
External dimensions(mm)	291±15(W)×266(L)×274(H)

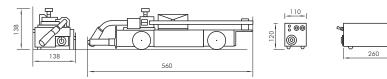
15

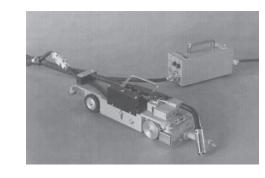
Carry Boy•K

Welding machine for fillet welding of cross pillars.

FEATURES

- Compact design, can fit into a 150×150mm square space
 Compact and lightweight(Approx.8kg), to reach the welding location.
 Stable traveling has been achieved by the electromagnetic wheels.


Standard specifications


Horizontal fillet welding
Approx.8kg
4-wheel drive(electromagnetic front wheels)
Left/right adjustment: ±10mm
500A, 60%; wire thickness: φ1.2mm
Limit switch for forward direction
10 to 100cm/min
Welding switch, traveling speed adjustment
AC100V±10% 50/60Hz
138(W)×560(L)×138(H)
6m

*There are two different torch models in symmetrical shapes. One for welding at right side of the main unit, one for welding at left side.(the photo shows a leftside model)

Carriage (left handed)

Control box

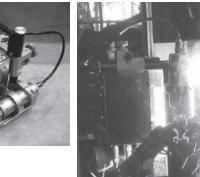
15

SY-mini

Compact automatic welding carriage

FEATURES

- 1. Lightweight(Approx.9kg), compact design facilitates transport and welding preparations.
- 2. Weaving function exhibits power for multi-pass welding for various positions.
- 3. Supports various types of welding such as butt welding and filet welding.


Standard specifications

Traveling carriage unit

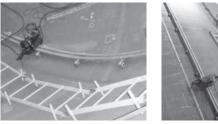
Input voltage	AC100V±10% 50/60Hz
Traveling method	Hugging rail/rack & pinion/clutch
Traveling speed range	0 to 50cm/min
Speed adjustment	Volume knob control
Connection with welding machine	Equipped(torch switch connection)
Clutch mechanism	Equipped(hand push travel enabled when clutch switching)
Traveling rail	1.5m/each
External dimensions(mm)	368(W)×401(L)×218(H)
Weight	Approx.9kg

aving unif(incluaing forch slider

•
Swinging
Volume adjustment(50°/sec)
Volume adjustment(±9°)
Both ends, center
0 to 2.0sec.
100mm(rack direction manual)
90mm(rack direction manual)
End of 2 axes(manually radius set)

NAVI 21

Compact arc welding robot that contributes to enhancement of welding quality


FEATURES

- 1. Being able to record the welding seam in the memory saves site when setting the rail and stabilizes the target position while welding.
- 2. Offers table quality of finish and start ends by automatic welding of teaching/ memorized intervals and automatic stop. 3. Offers stable welding quality by merit of colorful welding function. 4. Enables real time work conditions revision while welding.

Standard specifications

Welding robot main unit

······································	
Axis configuration	3 orthogonal axes
Axis motor type	Stepping motor
Stroke forward/reverse	100mm
vertical	80mm(also manual 50mm)
travel axis	20,000mm
External dimensions(mm)	200(W)×550(L)×265(H)
Weight	11kg
Control unit	
Input voltage	AC100V±15% or AC200V±15% 50/60Hz
No. of teaching points	max.50
No. of control axes/route control	3 axes/linear interpolation
Modes	Round trip/one-way, automatic/manual stop
Welding conditions Setting of voltage/current	Setting by knob of operation pendant
Setting of work conditions	Weaving width 0 to 40mm, both ends stop time(max. 9.9sec),
(weaving conditions, etc.)	welding speed(0 to 150cm/min), software weaving for forward/reverse vertical axes
Real time revision items	Current/voltage/traveling speed/torch target position weaving conditions
External dimensions(mm)	210(W)×463(L)×300(H)
Weight	11kg
Control cable length	25m

15

Welding Machine and Equipment

SESNET-WII

High Efficiency Electroslag Welding Machine Utilizing Non-consumable Nozzle

SESNET (Simplified Electroslag Non-consumable Elevating Tip) is a simplified electroslag welding machine with a non-consumable nozzle and a nozzle elevating mechanism. Welding performance and operation efficiency are greatly improved in butt welding of comparatively thin and short T joints by the combined use of a fine diameter solid wire.

APPLICATION

Vertical welding of diaphragms and connection joints of steel frames, bridges and longitudinals of ships.

FEATURES

- 1. High-efficiency, water supply type electro-slag welding machine with nonconsumable hose.
- 2. The weaving equipment can weld $19\mathchar`-65mm$ thick plates.
- 3. Non-consumable nozzle rises automatically as welding progresses, thereby enabled unmonitored welding after start.

MODEL

Welding Machine and Equipmen

Model	Number of Electrodes	Machine Weight	Recommended Power Source
SESNET-WII	1	17kg approx.	600A (DC)

■ RECOMMENDED WELDING MATERIALS

Base metal	se metal Wire	
Mild steel and 490,	YM-55A (1.6 ϕ)	
590MPa high tensile	YM-55S (1.6ϕ)	YF-15I
strength steel	YM-60E (1.6ϕ)	

■ TYPICAL WELDING CONDITIONS

Groove	Plate / ness,	Thick- mm	Gap (G)	Current	Voltage	Wire Feed Speed	Welding Speed
Geometry	T_1	T_1	mm	А	V	m/min	mm/min
	20	20	25	380	46	8.5	34
T2 -G-+ T1	50	60	25	380	52	8.5	14
	60	100	25	380	54	8.5	12~14

Standard Specifications *Upgraded function

Nozzle raising drive unit

input voltage AC100V±10% 50/60Hz	
Drive system	Friction drive by rubber rollers
Drive speed	0 to 300mm/min
Angle Adjustment	±3°

*Notched rollers control nozzle slippage.

*Increased strength of the angle adjustment part stabilizes the welding aiming position.

*A speed control motor stabilizes the raising speed.

Nozzle position adjustment range

Vertical direction	200mm
Left/right direction	150mm
Front/back direction	65mm
Turning angle	200°

Weaving unit

Tire tracks	Round trip simple vibration
Amplitude width	5 to 60mm
frequency	0 to 8times/min(at max. amplitude)
Stop position	Both ends of the amplitude width
Stopping time	0 to 10sec(1sec pitch)

*A speed control motor stabilizes the raising speed.

*The next setting time is shortened by the center return function.

Non-consumable nozzle

Coolant type	Water cooled
Rated current	500A
Use ratio	100%
Application wire diameter	φ1.6mm
Nozzle diameter	φ14mm
Nozzle length	1,000 to
	1,600mm(welding
	length+350mm)

*Deflection is reduced by increased strength. *Analog control has been improved to digital control.

*Defect detector and automatic stop function

15

VEGA

high-efficiency vertical automatic welding machine (Electro gas arc welding machine)

VEGA welding is a hight-efficiency one-pass vertical welding method that moves small diameter wire (1.6mm diameter) in the direction of the thickness of steel plate. The welding carrige automatically ascends while keeping a given wire extension.

FEATURES

- 1. Can perform single pass vertical welding of plate thickness of 12 to 28mm.
- 2. Weighs Approx.22kg including weaver and features easy operation to make it ideal for on-site welding.
- 3. Automatic welding speed control offers uniform welding bead for gap variation.
- 4. Because surface bead is determined by groove shape of sliding copper plates, can form pretty bead with minimal height.
- 5. Able to form uniform, pretty back bead using NSSW SB-60V solid backing material.

Standard Specifications

Traveling carriage unit

Input voltage	AC200V±10% 50/60Hz
Traveling method	Rack & pinion
Traveling speed	max.500mm/min
Traveling control	Automatic elevation control by welding current detection
Clutch mechanism	Equipped(when the clutch is released, manual push traveling is possible)
Torch setting adjustment	Vertical adjustment: ±20mm Horizontal: ±30mm Plate thickness direction: ±20mm
Traveling rail	1.5m/each
Coolant constant contact sliding sheet copper	Water cooled type
External dimensions(mm)	665(W)×360(L)×365(H)
Weight	Approx.22kg
Weaving unit	
Weaving type	Round trip simple vibration
Amplitude width	0 to 20mm
Stop position	Both ends of the amplitude width
Stopping time	0 or 0.1 to 3sec.
Stopping time	0 or 0.1 to 3sec.

RECOMMENDED WELDING MATERIALS

	W	ire	D 1.	al · 11 a
Base metal	Brand Name	Type of Current	Backing Material	Shield Gas ℓ/mm
Mild steel. 490MPa high tensile strength steel	EG-1	DC (+)	Glass tape +copper plate	CO ₂ , 30
Grade E steel	EG-3		or SB-60V	
590MPa high tensile strength steel	EG-60			

TYPICAL WELDING CONDITIONS

Plate Thickness mm	Groove Geometry mm	y	Current A	Voltage V	Speed cm/min	Heat Input kj/cm	Oscil Width mm	llation Frequency n/min
12.7	->		340	35~37	11~12	60~70	0~1	60~80
16		-	380	38~40	11~12	70~80	0~4	60~80
20		-	400	40~42	11~12	80~90	4~8	60~80
25		;	400	40~42	10~11	90~100	8~12	60~80
25	5	BP	340	35~37	12~13	$55 \sim 65$	0~1	60~80
20		FP	330	34~36	12~13	55~65	1~3	60~80
36	5	BP	400	40~42	13~14	70~80	2~6	60~80
36		FP	400	40~42	13~14	70~80	6~8	60~80

15

Welding Machine and Equipment

Two Electrode VEGA Welding Machine

High-efficiency vertical automatic welding machine (Electro-gas arc welding machine)

Two Electrode VEGA Welding Machine welding is similar to single-electrode type VEGA welding except the two electrodes are disposed across the thickness of steel plate. Flux cored wire and solid wire are used as the electrodes on cap side and root side. Compared with single-electrode method, this method permits much more efficient welding with extra-heavy steel plates ranging from 40 to 80mm in thickness, reduces man-hours, and increases the reliability of welded joints.

FEATURES

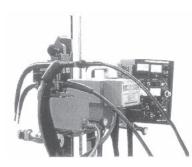
- 1. Vertical position single-pass welding of plates of 40 to 80mm thickness is possible.
- 2. Higher quality and performance, compared to single-electrode welding, is achieved.
- 3. Simultaneous weaving of both electrodes in the plate thickness direction stabilizes penetration.
- 4. Performing welding under automatic elevation control by welding current detection reduces operator monitoring time.
- 5. Forming uniform and beautiful penetration beads is possible using the fixed back material, NSSW SB-60VT.

Standard Specifications

Traveling carriage unit

nuvening carriage onin	
Input voltage	AC100V±10% 50/60Hz
Traveling method	Rack & pinion
Traveling speed	max.500mm/min
Traveling control	Automatic elevation control by welding current detection
Clutch mechanism	Equipped(when the clutch is released, manual push traveling is possible)
Torch setting adjustment	Vertical adjustment: ±20mm
	Horizontal: ±30mm
	Plate thickness direction: ±20mm
Traveling rail	1.5m/each
Coolant constant contact sliding	Water cooled type
sheet copper	
External dimensions(mm)	565(W)×705(L)×405(H)
Weight	Approx.25kg
Weaving unit	
Weaving type	Round trip simple vibration
Amplitude width	0 or 2 to 50mm
Stop position	Both ends of the amplitude width
Stopping time	0 or 1 to 5sec.

Option Specifications Wire feeding length, digital display


Wire feeding length 0.0 to 50.0m/min

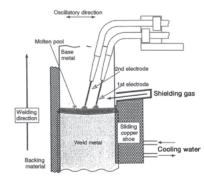

■ EXAMPLES OF WELDING CONDITION

Plate thickness mm	Brand name of wire	Electerode	Current A	Voltage V	Speed cm/min	Heat input kJ/cm	Oscillatory width mm
50	EG-3T	Cap side	390	42	6.8	282	5
	YM-55H	Root side	370	42	0.8	202	Ð
60	EG-3T	Cap side	390	42	6.0	319	15
60	YM-55H	Root side	370	42	6.0	519	10
70	EG-3T	Cap side	390	42	4.5	426	25
10	YM-55H	Root side	370	42	4.0	420	20

RECOMMENDABLE WELDING MATERIALS

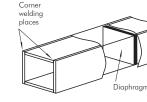
Electrode	Wire Brand name	Backing Material	Shield Gus (ℓ/min)	
Cap side	EG-3T	SB-60VT	CO 25 40	
Root side	YM-55H	SB-60V1	CO ₂ , 35~40	

15

Welding Machine and Equipment

High Heat Input Submerged are Welding Equipment

High Efficiency and High Quality Welding of Box Column Corner Joint


The size of box columns became larger as steel structures became taller and larger and BOX WELDER was designed to carry out the welding of the corner joints of box columns with efficiency and stable quality. The mechanism to provide especially stable welding is built into the equipment since there are connection joints which require full penetration and long welding lines in the corner welding of thick plates. Adoption of the twin-tandem process using high current assures good operational efficiency and welding joints without defects.

CHARACTERISTICS

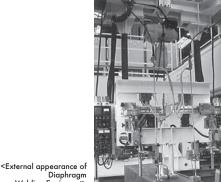
- 1. Stable bead with deep penetration and little distortion is obtained since corners of both sides of column are welded at the same time with high current.
- 2. A built-in preset type welding current adjustment unit makes observation of multiple eletrodes easy.
- 3. Proper amount of flux is supplied to the proper place by the combined mechanism of automatic flux supply and recovery unit and a unique flux hold mechanism.
- 4. It is equipped with a high performance tracking device to detect groove position accurately.
- 5. It can be used for the welding of box columns with a wide range of size differences.

RECOMMENDED WELDING MATERIALS

Base metal	Wire	Flux	Remarks
Mild steel and 490MPa high tensile strength steel	Y-DL (4.8, 6.4mm)	NSH-53Z	Single-layer welding of plates up to about 50mm thick.

Diaphragm Welding Equipment

Electroslag Equipment for Automatizing Welding of Box Column Diaphragms


Diaphragm Welding Equipment mounts several SESNET-Ws, our unique nonconsumable type electroslag welding machines, and assures increased efficiency and stable quality in the welding of diaphragms.

CHARACTERISTICS

- 1. Welding of both sides of diaphragm at the same time decreases distortion.
- 2. It is one-pass high efficiency welding using a fine diameter (1.6mm) solid wire.
- 3. It has an oscillation mechanism and, therefore, is applicable for a wide range of plate thicknesses (16~60mm when SESNET-W is mounted).
- 4. One operator can handle several equipment since arc start is easy and welding conditions are automatically controlled.

<Appratus of SESNET system>

<External Appearance of BOX GIRDER>

PANEL LINE PRODUCTION FACILITY

A panel line is a production line of parallel blocks used in shipbuilding. We, NIPPON STEEL WELDING & ENGINEERING Co., LTD., have supplied many panel line production facilities in domestic and overseas markets and are able to provide welding facilitied, welding technology and materuals. We provide our customers with a series of system engineering from welding of plates to the assembling of big structures including a layout which matches the production amount and transportation.

ONE-SIDE WELDING APPARATUS

1. It is possible to perform exellent quality welding with high efficiency providing a beautiful surface and reverse from one side. (No device for reversing large plates is necessary.) It is applicable for either three-electrode or four-electrode one-side welding apparatus.

Applicable plate thickness: $10 \sim 40$ mm

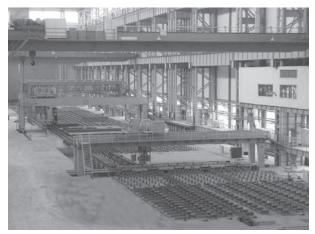
Welding length:30m max (the longest we have supplied)Welding speed:1.5m/min (four-electrode one-side weldingfacility at 16 t mm)1.5m/min (four-electrode one-side welding

- 2. It is possible to weld with ease even plates with different thicknesse due to the special backing copper plates and backing mechanism.
- 3. Flux on the reverse side is scraped off by a scraper and automatically dumped by a conveyor.
- 4. Surface side flux is automatically recirculated.
- 5. Many methods have been developed and actually used for starting and ending treatment in the one-side welding method, such as alit-tub, cascade, gas heating at the ending point, etc., and two types of welding conditions, cascade and slit-tub methods, are preset in our one-side welding apparatus. It is possible, therefore, to carry out welding with fewer defects by selecting the appropriate method, depending on the plate thickness being welded.
- 6. Welding conditions for different plate thicknesses have been preset for each plate thickness and, therefore, the apparatus is easily set automatically by just accessing the plate thickness.
- 7. After the starting of welding, the panel line welding facility automatically carries out a series of unattended operations from the stopping of welding to the moving of the truck.
- 8. A platform has been installed on a gantry girder so that the changing of wire and supplying of flux can be carried out easily.

INSPECTION AND MAINTENANCE STAGE

- 1. An inspection and maintenance stage can be moved by rollers so that the entire reverse welding line of the one-side welding can be confirmed (in order to remove obstacles).
- 2. It is also equipped with a lighting unit.

LONGITUDINAL WELDING APPARATUS

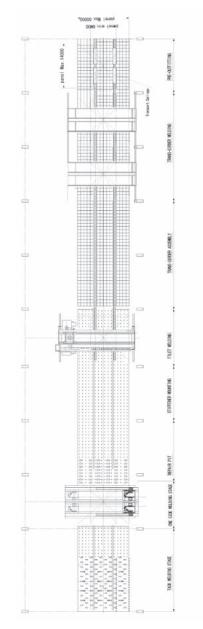

- The twin tandem welding process (HS-MAG Process) assures high speed welding with a beautiful bead apperance.
 (A patented product of Nippon Steel & Sumikin Welding Co., Ltd.) Welding speed: 1.1 ~ 1.2m/min (leg length: 5 ~ 6mm)
- 2. Drain holes are detected by a special detector and [ON/OFF] of welding is automatically carried out.
- 3. Each of the welding machines stops welding when detecting the ending of the longitudinal.
- 4. The environment of the workshop is maintained clean by a fume remover.
- 5. Welding conditions have been preset for each leg length and are set automatically by accessing the leg length.

WORKING BRIDGE

- 1. It is difficult to bring welding machines into a block where transverse bulkheads and girders have already been tack welded. The working bridge is a simplified apparatus to solve this problem and to improve workability.
- 2. No complicated handling of cables is necessary since power sources have been installed on the bridge. Also, welding current is grounded to rails.
- 3. The working bridge is of an L type in order to secure working places and spaces to place transverse bulkheads.

ELECTRIC CAPACITY

In general, electric energy used in one panel line is about 2,000 KVA (one unit with 3 electrodes for one-side welding and 16 \sim 20 selectrodes for longitudinal welding), but it increases by about 300 KVA if four electrodes are applied in one-side welding.



<Image photo of panel line>

15

Welding Machine and Equipment

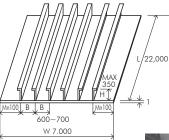
<Layout of panel line>

TORXING BEIDG (2 sets)

(1 sec)

ONE SIDE WEDING DAVIDE (2 mets)

Multi-electrode Automatic Welding Equipment


High Efficiency Horizontal Fillet Welding with Multi-electrode Welding Equipment Applying Twin-single tandem Welding Process

■ IN THE CASE OF 10/20-ELECTRODE AUTOMATIC WELDING EQUIPMENT

10-electrode Welding Equipment has five twin-single tandem welding heads and carries out the horizontal fillet welding of longitudinals or stiffeners of large structures for ship, bridges, etc.

■ SPECIFICATION

Welding process	Twin/Single tandem CO_2 horizontal fillet welding, 4.5~7.0mm leg length
Welding materials	SF-1, SM-1F, 1.6mm dia., 200kg pay-off pack with a remaining quantity detector on 1.6
Tracking	Contact type detector
Welding end detector	Optical sensor
Gantry carriage	2-motor drive method
Welding head carriage	5 units
Welding conditions setting	LCD touch switches
Error message	Message indication on the screen
Operation method	Entirely by the operational pendant at hand
Welding power source	600A (DC)

<Structure to be welded>

<External Appearance of Multi-electrode Automatic Welding Equipment>

15

Welding Machine and Equipment

One-side SAW Welding Equipment (FCuB)

Side Flow Magnet Type Flux Copper Backing Process

This is one-side submerged arc welding equipment for joining large steel plates. Two seams of maximum 24 meter length plates, 24.6 meters including tab plates, are welded at a time.

CHARACTERISTICS

- 1. The travelling girder is separated from the backing plate carriage and, therefore, the equipment is of very simple structure.
- 2. Two travelling girders, each of them equipped with 3 electrodes, weld steel plates of 10~40mm thickness, 2~5m apart and a maximum of 15mm thickness difference in one run. It is designed to make it possible to change the welding head to four electrodes.
- 3. Welding conditions are preset. Once welding is started by retrieving the necessary information by the plate thickness code number, the entire operation to the end of the seam proceeds without supervision.

RECOMMENDED WELDING MATERIALS

Base metal	Wire	Surface Flux	Backing Flux
Mild steel and 490MPa • high tensile strength steel	Y-DL	NSH-50M	NSH-1RM
490MPa Grade E high tensile strength steel	Y-DM3 Y-DL	NSH-55EM	NSH-1RM
Low Temperature service steel	Y-3NI	NSH-55L	NSH-1RM

Flux Copper Backing Submerged Arc Welding

Submerged Arc Welding Process.

High Speed FCuB Welding Equipment

NH-HISAW

NH-HISAW is one-side flux copper backing submerged arc welding equipment to join large steel plates with high speed. Welding speed was increased by about 2.5 times as fast as conventional flux copper backing process by the introduction of the four-electrode system. It is equipped with a device for automatic treatment at starting and finishing ends and an automatic surface flux supply unit.

APPLICATION

Joining of large plates for ships, bridges and steel structures.

CHARACTERISTICS

- 1. Welding speed is increased by 2.5 times as fast as conventional processes due to the unique four-electrode system. Mechanical properties of weld metal and bead appearance are excellent.
- 2. Operation is carried out fully automatically with optimum welding conditions to the end and, therefore, one operator can handle several NH-HISAWs simultaneously without watching them.
- 3. Fluctuation of welding conditions due to magnetic induction of cables, which causes problems in multi-electrode welding, has been improved.
- 4. It is possible to make the most of your present one-side welding equipment. Please consult with us.

RECOMMENDED WELDING MATERIALS

Base metal	Wire	Surface Flux	Backing Flux
Mild steel and 490MPa high			
tensile strength steel	Y-DL (4.8, 6.4mm)	NSH-50M	NSH-1RM

■ TYPICAL WELDING SPEED

Plate Thickness, mm	NH-HISAW, cm/min	Conventional Process, cm/min
16	150	60
20	100	58
25	90	55

■ COMPONENTS

- 1. Welding carriages and bobbin carriages
- 2. Welding operation board, control board
- 3. Welding power sources (system power source, etc.)
- 4. Wire feed units
- 5. Panel carriage
- (conveying units, backing units)
- 6. Magnet type weight girder
- 7. Flux supply units
- 8. Backing flux supply and recovery units

<External Appearance of High Speed FCuB Welding Equipment>

294

Welding Machine and Equipmen

FULL DIGITAL PLASMA WELDING MACHINE

CHARACTERISTICS

1. Digital Setting of Welding Conditions

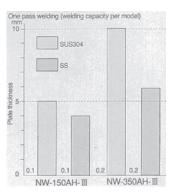
Reproducibility of welding is improved and setting fluctuation of operators is reduced to zero by the digital setting of welding conditions. Visibility is exellent due to digital display and handling is also excellent due to large knobs.

Welding conditions can be changed for each production item since it is possible to store up to 99 welding conditions in the internal memory.

- 2. Standard Featuews for Communication Function (RS232C) Automatic setting of welding conditions is possible using external computers, sequence, etc. Also, it is possible to readout output values such as welding currents, etc. on external equipment. This makes the storing of welding history and centralized control of welding conditions possible.
- 3. High Quality and High Speed Welding

High speed, efficiency and quality welding is assured since high density plasma arc with rigidity due to inverter control and high pulse is obtainable. In addition, the control of heat input by pulse prevents undercut and burning through and assures the formation of an excellent bead.

- 4. Various Kinds of Torches Suitable for Production Methods and Usage It is possible to select the most suitable torch fit for the use from various kind of torches.
- 5. A Large Choice of Optional Equipment


It is possible to make up the welding system you require utilizing various kinds of optional equipment which can be used for various objects to be welded and systems.

Function

- Fully Equipped with Functions Required for Automatic Welding
- 1. Interlock functions such as robots, automatic machines, etc. are installed standard equipment. Robots to be used with the machine must be those for plasma and TIG welding. Please contact us for details.
- 2. A pilot gas mass flow control unit is installed as standard equipment.
- 3. It is possible to have a wire feed control function built-in (optional).
- 4. A plasma gas control function is installed for crater treatment as standard equipment.
- 5. It also can be used with a primary power source of AC380/400V (a transformer for optional cooling water circulation pump).
- 6. It is possible to set pulse frequency from 0.5 to 999 Hz.
- 7. It is possible to set current patterns necessary for arc starting and crater treatment.
- 8. Cooling fans and cooling water circulation pumps stop operaion automatically during standby (when welding arc and pilot arc are off).
- 9. The following functions are equipped with to ensure the starting of welding arc.

Control of pilot current increase Control of pilot gas flow rate increase Control of the combined use of high frequency

Model		NW-150AH-III	NW-350AH-III		
Input voltage	V	3-phases AC 200/220V 10% 50/60 Hz			
Rated input	KVA	9.5 22.0			
Output current range	А	5~150	10~350		
Rated duty cycle	%	7	0		
Maximum no-load voltage	V	160			
Rated load voltage	V	40			
Control method		IGBT inveter control co	onstant current system		
Cooling method		Forced a	ir cooling		
Outside dimensions	mm	400×77	70×792		
Weight	kg	95			
Pulse frequency	Hz	0.5~999			
Water tank capacity	ł	7.	.6		

Specification

15

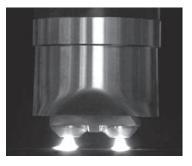
PLASMA Machine and Equipment

TWO ELECTRODES PLASMA ARC WELDING MACHINE -W-PLASMA Welding-

PRINCIPLE

Two electrodes plasma arc welding method is how to weld by two electrodes plasma arcs. It is possible to perform welding which is free from undercuts even at high speeds, since even if undercuts generate in the preceding arc, the surface beads will be made even by the following arc.

CHARACTERISTICS


- 1. More than twice high speed welding has been realized compared with conventional method by two electrodes plasma welding.
- 2. High speed welding has been realized by striking two plasma arcs in a short distance. In addition, high quality welding can be performed by the combination with a fully digitalized plasma welding machine, .
- 3. Due to the unitization of welding tips, maintenance can be carried out as easily as with conventional torches.
- 4. The shape of the torch is simple and straight. Therefore it can easily be attached to welding jigs such as robots and so on.

■ Welding speed

Example of shaped I type butt welding for mild steel

W-PLASMA Welding speed (m/min) (Two electrodes welding) Conventional method (One electrode welding 0 2 5 Plate thickness (mm)

In comparison with conventional methods, two electrodes plasma welding can obtain more than twice faster welding speed.

PLASMA WELDING MACHINE FOR GALVANIZED STEEL SHEET

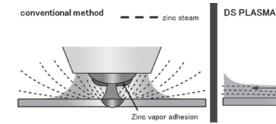
(DOUBLE SHIELD GAS PLASMA WELDING MACHINE = DS PLASMA)

APPLICATION

Galvanized steel sheet

CHARACTERISTICS

In case of conventional plasma welding method, it was impossible to realize stable welding for galvanized steel sheet during a long work time. That's why zinc steam from galvanized steel sheet was attached to insert tip.


This DS plasma welding method has realized stable welding during a long work time by blowing zinc steam away with double shield gas flow.

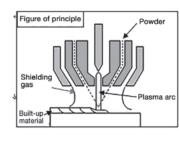
Moreover this method has also realized flat and beautiful bead appearance

•Plasma welding machine model: NW-350AH- II-DS

Plasma welding torch model: 107WH-DS

zinc stean

PLASMA Machine and Equipmen


Plasma Transferred Arc Welding Equipment

Plasma transferred arc (PTA) welding is used to build up very hard material that normally cannot be molded into welding wire. The principle is to feed powder, which is build-up material as shown in the figure, into the plasma arc by carrier gas (Ar gas) to be welded and built up.

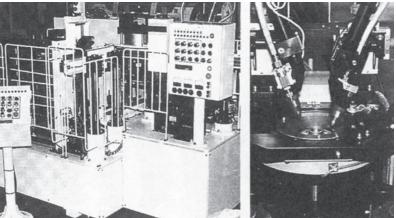
Plasma transferred arc welding has many features, such as enabling individual control of the heat source and filler metal (powder), which makes it easier to set the dilution amount and the surplus amount to the base metal, resulting in build-ups of a wide range (from thin to thick).

CHARACTERISTICS

- 1. You can control the penetration quantity into the base metal.
- 2. A wide range of build ups can be achieved.
- 3. It is easy to control the build-up welding quantity.
- 4. No slag is generated in an inert gas atmosphere, and high quality build-up can be achieved.

Circumferential Fillet Welding Equipment

High Quality Plasma Welding with Little Welding Distortion


Circumferential Fillet Welding Equipment consists of a work conveying index table, a work clamp unit, a welding unit and a wire feed unit, and carries out plasma welding of a fillet joint of a gear and shaft pressed in by pressure. The fillet is welded by adding a filler wire and, therefore, any required leg length can be obtained.

APPLICATION

Welding of various gears such as motorcycle pulleys.

CHARACTERISTICS

- 1. Semicircular welding by two torches facing each other drastically decreases welding distortions.
- 2. Welding defects such as pits and cracks do not occur since a pilot plasma arc blows off machine oil even if it is adhered to groove surface.
- 3. No spatters means no after treatment.
- 4. No defects occur at bead overlapping parts due to crater treatment.

300

PLASMA Machine and Equipment

Pipe Overlap Fillet Welding Equipment

High Quality Welding of Overlap Joints by Plasma Welding

Pipe Overlap Fillet Welding Equipment consists of a work conveying unit, a welding unit and a control unit, and carries out circumferential plasma welding of an overlap fillet of a pipe pushed in to a boss. Work is conveyed by a quadrisecting index table and various sizes of pipes are produced by the onetouch exchange of a copper center pin fitted to the index table.

APPLICATIONS

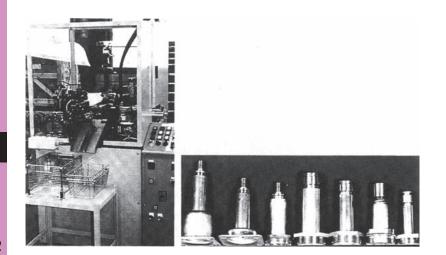
Overlap fillet welding of various pipes.

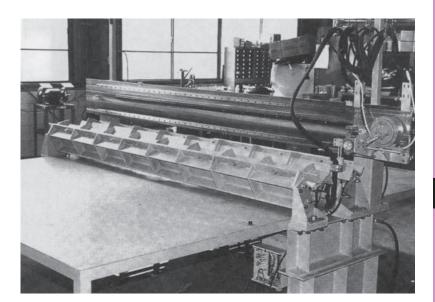
CHARACTERISTICS

- 1. A welding bead without spatters is obtained since the equipment is used in the combination with a plasma welding machine.
- 2. It assures welding with little distortion.
- 3. A beautiful bead without oxidation is obtained by the after shield.
- 4. Wearing down of the electrode is very low making continuous operation for long hours possible and, therefore, high operation efficiency is assured.

Flat Plate Butt Welding Equipment

High Quality Welding of Seam Joints by Plasma Welding


Flat Plate Butt Welding Equipment consists of a torch travelling unit, a work clamp unit and a control unit, and carries out plasma welding of butt seam of thin plates. A high quality bead with little distortion is obtained in high speed welding due to unique air clamps to restrain the work uniformly along the total length of the welding line.


APPLICATIONS

Butt welding of flat plates of various panels.

CHARACTERISTICS

- 1 It carries out perfect uranami (sound penetration bead) welding without spatters and with little distortion.
- 2. Beautiful surface and reverse beads without oxidation are obtained by after shied and back shield.
- 3~ It can weld plates of a wide thickness range from 0.2mm to 2.0mm.
- 4. Maximum welding length is 3,000mm.
- 5. Welding of SUS and Fe type materials is possible.
- 6. Unique air clamps restrain even extremely thin plates perfectly and easily.

15

Simplified Plasma Seam Welding System

Plasma welding machines are also widely used in the tank industry (SUS, SS materials).

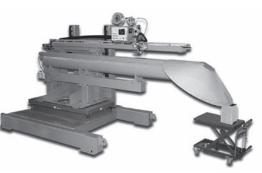
The key reasons why plasma welding machines are employed are their capability of single-sided single-pass full penetration welding by keyhole, and that welding distortion is small.

As a new product, we have developed and commercialized a simplified plasma seam welding device for a head plate (a conical member attached as a lid on both sides of a tank) for which automatic welding had not been possible previously.

APPLICATIONS

Seam welding of inner and outer bodies of stainless pots and jars, washing machine tubs, automotive mufflers and other cylindrical objects.

CHARACTERISTICS


1. Automatic seam welding of the head plate possible It was structurally difficult to weld the head plate with conventional pipe seam welding equipment (clamp seamer).

This simplified plasma seam welding device enables welding of a conical workpiece such as a head plate by adopting a structure that only needs to place (or hang) the workpiece.

2. Non-clamp welding possible

In conventional butt welding, it is common to perform welding while the workpiece is being restrained with jigs from the front side and the opposite side, as in the clamp type shown to the right.

In contrast, in this device, welding with non-clamping is enabled due to low strain welding by keyhole and utilization of workpiece stiffness by cylindrical forming and tack welding (however, depending on required quality, distortion removal may be necessary.)

3. Simple structure achieves low price

Unlike a clamp seamer, this device does not require a mechanism to clamp the workpiece, so the device structure can be simplified, the device enabling to be provided at a lower price than the clamp seamer. Furthermore, the surroundings of the torch are structurally open, which is favored by customers who wish to monitor the arc condition.

4. Movable back shield mechanism (National patent number: 6376664)

In the conventional back shield, a gap is formed between the work piece and the backing plate when back shielding is applied to a material whose curvature changes continuously such as a head plate, because of the structure that applies the backing plate to the whole welding line, making it difficult to completely protect the back bead with a shielding gas.

This device has a backing mechanism that moves in conjunction with the torch and is in close contact with the workpiece, providing a more complete back shield effect. Furthermore, the resulting local shield reduces gas consumption as compared to the conventional methods.

15

Clamp Seam Welding System (6.2m type)

High Quality and High Speed Plasma Welding of Seam Joints

Flat Plate and Pipe Seam Welding Equipment consists of a torch travelling unit, a work clamp unit, a wire feed unit and a groove line monitor unit, and carries out the one-side keyhole welding of 1.0~8.0mm I groove joints. A high quality bead with little distortion is obtained in high welding speed due to unique air clamps to restrain the work uniformly along the total length of the welding line.

APPLICATIONS

Joining of plates for various large tanks (production of panels). Seam welding of tanks for beer, milk, lactic acid beverages, high pressure gases, etc.

CHARACTERISTICS

- 1. Possible to correspond to a maximum weld length of 6.2 m (conventionally 5.2 m is the maximum)
- 2. Possible to check arcs and grooves with a monitoring camera Easy to check the condition of the terminal groove adjustment in long distance welding
- 3. Possible to check the grooves with a camera at the time of work set for inner surface welding
- 4. Possible to weld the inner surface of the tank (minimum ϕ 1,500 mm)
- 5. Possible to weld dimpled plate with optional parts
- 6. Automatic adjustment of standoff by height copying
- 7. Shortened welding condition search time by pre-installation of welding basic conditions
- 8. Reduction in usage of back shielding gas by controlling the effective range according to welding position

Approval List of Welding Materials

16

1. Covered Arc Welding Materials -SMAW- (1)

		N	K			ABS	
Type of Steel	Brand Name	Grade	Welding Position	Max. Dia. mm	Grade	Max.D All	ia. mm F, H-Fi
	G-200	KMW3	F, Vu, O	7.0	3	5.0	7.0
Steel For Mild Steel For High Tensile Strength	A-200	KMW3	F, Vu, O	6.0	3	5.0	6.0
	G-300	KMW3	F, Vu, O	7.0	3	5.0	7.0
	S-03Z	KMW2	F, Vu, O	5.0	2	5.0	_
	NS-03Hi	KMW3	All	6.0	3	6.0	_
	FT-51	-	_	-	2	5.0	-
	S-16	KMW53H15	F, Vu, O	6.0	3Y	5.0	6.0
For Mild Steel	S-16V	KMW53H15	F, O, H (Vd)	6.0	3Ү	5.0	6.0
	EX-7	KMW2	F-Fil, H-Fil	8.0	2	_	8.0
	EX-4	KMW2	F-Fil, H-Fil	7.0	2	_	7.0
	TK-R	KMW53H10	F, Vu, Vd	4.0	-	_	-
	A-10	KMW3	All	6.0	3	6.0	-
	A-14	KMW3	All	7.0	3	7.0	-
	A-17	KMW3	All	7.0	3	7.0	-
	L-55	KMW53Y40H15	F, Vu, O	6.0	3Y, 3Y400	5.0	6.0
	L-55 • PX	KMW53Y40H10	All	5.0	3Y400H10	5.0	5.0
	L-55 • GP	KMW53Y40H10	All	5.0	3YH10	5.0	5.0
	7018	-	—	-	3YH10	5.0	-
	EX-55	KMW53H15	All	7.0	3Y	5.0	7.0
For High	TW-50	KMW53H15	All	4.0	3Y	F, O (Vd): 4.0	-
Tensile Strength Steel	LM-55G	KMW53H15	All	8.0	3Ү	_	8.0
	EX-50F	KMW52	F-Fil, H-Fil	6.4	2Y	_	6.4
	L-60	KMW3Y50H10	F, Vu, O	6.0	$\begin{array}{c} \mathrm{AWS} \; \mathrm{A5.5} \\ \mathrm{E8016}\text{-}\mathrm{G}^{\scriptscriptstyle 1)} \end{array}$	6.0	_
	L-62CF	KMW3Y50H10	All	5.0	-	-	-
	L-74S		_	-	4YQ550H5	4.0	-
	L-80	AWS A5.5 E11016-G	F, Vu, O	6.0	AWS A5.5 E11016-G ¹⁰	4.0	6.0

Note; 1) min.AV.CVN 34J at -40°C

	LR		DN	V GL		:	BV			Ot	hers	
Grade	Welding Position	Max. Dia. mm	Grade	Welding Position	Max. Dia. mm	Grade	Welding Position	Max. Dia. mm		Grade	Welding Position	Max. Dia. mm
3m	All	7.0	3	All	7.0	3	All	7.0	-	-	-	-
3m	All	6.0	3	All	6.0	3	All	6.0	-	-	-	-
3m	All	7.0	3	All	7.0	3	All	7.0	-	-	-	-
2m	All	5.0	_	-	-	_	-	-	-	-	-	-
3m	All	6.0	3	All	6.0	_	-	-	-	-	-	-
2m	All	5.0	_	-	-	_	-	-	-	_	_	-
3Ym H15	All	6.0	3Y H10	All	6.0	3, 3YHH	All	6.0	-	_	_	-
3Ym H15	F, O, H (Vd)	6.0	3Y H10	F (Vd)	6.0	3, 3YHH	F, O (Vd)	6.0	-	_	_	-
2m, 2G	F	8.0	2	F	8.0	2	F, H	8.0	-	_	-	-
2m, 2G	F, H	7.0	2	F	7.0	2	F, H	7.0	-	_	-	-
-	-	-	—	-	-	_	-	-	-	-	-	-
3m	All	6.0	3	All	6.0	3	All	6.0	CR	3	-	-
3m	All	7.0	3	All	7.0	3	All	7.0	CR	3	-	-
3m	All	7.0	3	All	7.0	3	All	7.0	CR	3	-	-
3Y40m H15	All	6.0	3Y40 H10	All	6.0	3Y, 3Y40HH	All	6.0	-	_	-	-
-	-	-	3Y40H10	All	5.0	-	-	-	-	-	-	-
-	—	-	3Y40H10	All	5.0	-	-	-	-	_	—	-
-	—	-	3YH10	All	5.0	3YH10	All	5.0	-	-	—	-
3Ym H15	All	7.0	3Y H10	All	7.0	3, 3YHH	All	7.0	-	-	-	-
3Ym H15	All	4.0	3Y H10	All (Vd)	4.0	3, 3YHH	All	4.0	-	-	_	_
3Ym H15	All	8.0	017 111 5			0.0371111						
3YG H15	F	8.0	3Y H15	All	8.0	3, 3YHH	All	8.0	-	-	-	-
2Ym, 2YG	F	6.4	2	F, H	6.4	2Y	F, H	6.4	CR	2Y	F, H- Fil	6.4
3Ym H15	All	6.0	3Y H10	All	6.0	3Y46HH	All	6.0	-	_	_	_
_	_	_	_	-	_	_	-	-	-	_	_	-
	_	-	4Y55H5	All	4.0	_	-	-	-	_	_	-
-	_	_	_	_	_	-	_	-	-	_	_	_

16

		N	К			ABS	
	Brand Name	Grade	Welding Position	Max. Dia. mm	Grade	Max.D All	ia. mm F, H-Fil
Steel For Low Temperature Service Steel For Resisting Steel	L-55SN	KMW53H15 KMWL3H10	All	5.0	3Y H5 +Mfr's ¹⁾	5.0	-
	N-5F	KMWL3H15	F-Fil, H-Fil	7.0	3Y ²⁾	_	7.0
Temperature	L-47E	KMW63Y47H10	F, V	5.0	3Y400H10 +Mfr's ³⁾	5.0 (F, V)	_
	L-60LT	_	-	_	5YQ550 H5	4.0	_
For	L-80SN	_	_	-	5YQ690MW	5.0	_
Corrosion Resisting	RS-55	KMW53H15	F, Vu, O	6.0	3Ү	5.0	6.0
	S-308 • R	KD308	F, Vu, O	5.0	_	_	_
	S-308L•R	KD308L	All	5.0	-	_	-
	S-309•R	KD309	F, Vu, O	5.0	-	_	-
	S-309L•R	KD309L	All	4.0	-	_	-
	S-309M•R	KD309Mo	F, Vu, O	5.0	-	_	-
	S-309ML•R	KD309MoL	All	5.0	-	_	-
	S-316•R	KD316	F, Vu, O	5.0	-	_	-
	S-316L•R	KD316L	F, Vu, O	5.0	-	_	_
	S-2120 • R	Mfr's ⁴⁾	All	4.0	-	_	_
	S-DP8	_	_	-	-	_	-
For Special	YAWATA WELD B (M)	KMWL91	All	5.0	AWS A5.11 ENiCrFe ^{-4⁵⁾}	5.0	_
For Special Alloy	NITTETSU WELD 196	_	_	-	AWS A5.11 ENiMo ^{-9⁷⁾}	5.0	_

1. Covered Arc Welding Materials -SMAW- (2)

Note; 1) min.AV.CVN 69J at -60°C 2) min.AV.CVN 47J at -60°C 3) T.S.: 570-720N/mm², min.Y.S.: 460N/mm², EL.: 20%, AV.CVN 64J at -20°C 4) For Stainless Steel (NSSC2120)

5) min.AV.CVN 34J at -196°C

6) AWS A5.11 ENiCrFe-4 Mod. 7) min.AV.CVN 34J at -196°C

8) AWS A5.11 ENiMo-9 Mod.

	LR		DN	V GL			BV			Ot	hers	
Grade	Welding Position	Max. Dia. mm	Grade	Welding Position	Max. Dia. mm	Grade	Welding Position	Max. Dia. mm		Grade	Welding Position	Ma Dia mr
5Y40m H15	All	5.0	5Y H5	All	5.0	-	_	-	-	_	_	-
5Y40m, 5Y40G H15	F	7.0	5Y H10 (NV2-4L) (NV4-4L)	F, H	7.0	_	_	_	-	_	_	-
3Y47H10	F, V	5.0	3Y46H10	F, V	5.0	_	-	-	-	-	-	-
_	_	_	5 Y55 H5	All	4.0	5Y50H5	All	5.0 Only	-	_	_	-
						5Y55H5	All	4.0	-	_	_	-
5Y69H5	F, V, O	5.0	5Y69 H5	All	5.0	-	-	-	CCS	5Y69	All	5.
3Ym H15	All	6.0	3Y H10	All	6.0	-	_	_	CCS	3YH10	All	6.
_	_	_			_	_	_	_	_	_	_	<u> </u>
_	_	-	_			_	_	-	-	_	_	-
_	_	-	_	-	-	_	_	_	-	_	_	-
_	_	-	_	-	-	_	_	-	-	_	-	-
-	-	-	_	-	-	-	-	-	-	-	-	-
—	_	-	NV309MoL	All	5.0	—	-	-	-	_	-	-
-	_	-	-	-	_	-		-	_	_	_	-
-		_	-			-		_	_	_		
_			_			_			_			
-		_	Duplex	All	4.0	_		_	_	_	_	
9Nim H15	All	5.0	NV9Ni H10	All	5.0	N50H5	All	5.0	CCS	9Ni H5	All	5.
						Mfr's ⁶⁰	All	5.0	_	_	_	-
011	A 11	50	NUCLE	A 11	-	N50H5	All	5.0	-	_	_	-
9Nim	All	5.0	NV9H5	All	5.0	${ m Mfr's}^{s}$	All	5.0	CCS	9Ni H5	All	5.

2. Gas Shielded Arc Welding Materials 1) Gas Metal Arc Welding Wires Wires -GMAW-

Type of Steel	Brand Name	NK	ABS
	YM-26 / CO2	KSW53G (C) KSW53Y40G (C) ¹⁾	3YSA 3Y400SA ¹⁾
	YM-28 / CO ₂	KSW53G (C)	3YSA
	YM-28 / 85%Ar+15%CO ₂	KAW53MG (M2)	3YA
For Mild Steel and	YM-28S / 80%Ar+20%CO2	KSW53G (M2)	3YSA
High Tensile	YM-25 / 80%Ar+20%CO2	KAW53MG (M2)	3YA
Strength Steel	YM-25S / 80%Ar+20%CO2	KSW53G (M1, M2)	3YSA
	YM-55A / 80%Ar+20%CO2	KSW53Y40G (M2)	3YSA
	YM-60C / CO2	KSW3Y46G (C)	_
	YM-80C / CO ₂	AWS ER110S-G Equiv.	_
	YM-28E / 80%Ar+20%CO ₂	KSW53G (M2)	3YSA
	YM-55H / CO ₂	KSW53Y40G (C) KSWL3G (C) KSW63Y47G (C) ⁰	3Y400SA 3YSA Mfr's ²⁰
For Low Temperature	YM-47E / CO ₂	KSW63Y47G (C) H5	3Y400SAH5 Mfr's ³⁰
Service Steel	YM-60A / 80%Ar+20%CO ₂	KSW4Y46G (M2)	$M fr's^4$
	YM-80A / 80%Ar+20%CO ₂	KSW4Y69G (M)	4YQ690SA
	YM-69F / 90%Ar+10%CO ₂		5YQ690SA
	YM-36E / 80%Ar+20%CO2	KSWL3G (M2)	5Y400SA
For Stainless	YM-308L / 98%Ar+2%O2	KY308L (M1)	_
Steel	YM-316L / 98%+2%O2	KY316L (M1)	_

LR	DNV GL	BV		Others		
3YS H15	III YMS III Y40MS ¹⁾	SA3YM	KR	3YSG (C)		
	111 ¥40MS		CR	3YS		
3YS H15	III YMS	SA3YM	-	-		
3YM	III YM	A3, 3YM	-			
3YS H15	III YMS	SA3YM	CR	3YSM		
3YM H15	III YM	-	-	_		
3YS H5	III YMS	-	-	_		
3YS H15	-	-	-	_		
-	III Y50MS	-	-	-		
-	-	_	-	_		
3YS H15	III YMS	SA3M, SA3YM	-	_		
4Y40S H15	_	_	-	_		
3Y47S H5	-	-	-	-		
_	IV Y46MS	-	-	_		
_	IV Y69MS	-	-	_		
_	V Y69MS	-	-	_		
5Y40S	-	_	-	_		
304L S	VL 308L	-	KR	RY-308L (M1		
316L S	VL 316L	_	KR	RY-316L (M1		

Note; 1) Flat position only 2) min.AV.CVN 47J at -40°C 3) T.S.: 570-720N/mm², min.Y.S.: 460N/mm², EL.: 20%, AV.CVN 64J at -20°C 4) min.Y.S.: 490N/mm², T.S.: 590N/mm², EL.: 20%, AV.CVN 47J at -40°C

Type of Steel	Brand Name	NK	ABS	
	SF-1 / CO: SF-1 / CO: SF-1 V / CO: SF-1A / 80%Ar+20%CO: SF-1E / CO: SF-1B / CO: SF-1B / CO: SF-3 / CO: SF-3 / CO: SF-60 / CO: SM-1 / CO:	KSW52G (C) H5 KSW52Y40G (C) H5	2YSA, 2Y400SA H5	
	SF-1 · EX / CO ₂	KSW52G (C) H5	2YSA H5	
	SF-1V / CO ₂	KSW52G (C)	-	
	SF-1A / 80%Ar+20%CO2	KSW52G (M2) H5	3Y400SA H5	
	SF-1E / CO ₂	_	3Y400SA H5	
	SF-1B / CO ₂		3YSA H5	
	SF-1B / 80%Ar+20%CO ₂	_	3YSA H5	
	SF-3 / CO2	KSW53G (C) H5	3YSA H5, 3Y400SA H5	
	SF-3Y / CO ₂	KSW53Y40G (C) H5	3Y400SA H5	
	SX-3 / CO ₂	KSW53Y40G (C) H5	3YSA H5, 3Y400SA H5	
	SF-60 / CO2	KSW3Y46G (C) H5		
For Mild Steel	SM-1 / CO ₂	KSW52G (C) H5	2YSA H10	
and High Tensile Strength Steel	SM-1F / CO ₂	KSW52Y40G (C) H5	2YSA H5, 2Y400SA H5	
	SM-1F (×2) / CO ₂	KAW52Y40G (C)	2YA, 2Y400A	
	SM-1F•EX / CO ₂	KSW52G (C) H5	2YSA H5	
	SM-1FDA / 80%Ar+20%CO2	KSW52G (M2) H5 KAW52G (M2) H5	2YA H5	
	SM-1S / CO ₂	KSW52G (C) H5 KAW52Y40G (C) H5	2YSA H5, 2Y400A H5	
	SM-3EF (×2) / CO ₂	-	3Y400A	
	SM-3F / CO ₂	-	-	
	AS-1 / CO ₂	KSW52G (C)	2YSA H10	
	FC-1 / CO2	KSW52G (C)	2YSA	
	PL-22 / CO ₂	KSW52Y40G (C)	2YSA H10, 2Y400SA H10	
	FCM-1F / CO ₂	KSW52Y40G (C)	2YSA H10, 2Y400SA H10	
	FC-60 / CO ₂	KSW3Y46G (C) KSW3Y50G (C)	_	
	YM-1SA/SM-1SA/ CO2	KAW52G (C) H5	2YA H5	
	YM-1SA/80%Ar+20%CO ₂ / SM-1SA/ CO ₂	KAW52G (M2) H5 KAW52G (C) H5	2YA H5	

Note;	1)	Fillet-Weld only	
-------	----	------------------	--

LR	DNV GL	BV		Others
			CCS	2S H5, 2YS H5
2YS H5	II Y40 MS H5	SA2YMH5	KR	2YSG (C), 2SG (C)
			CR	2SM, 2YSM H5
2YS H5	II YMS H5	SA2YM H5	-	-
-	II YMS	-	-	-
014 007 H.F		CANVO UN	PRS	3YS H5
3Y40S H5	III Y40MS H5	SA3Y40 H5	RINA	3YS H5
03/2 115		CANNAG HE	PRS	3Y40SM H5
3YS H5	III Y40MS H5	SA3Y40 H5	CCS	3Y40SM H5
3YS H5	III YMS H5	-	CWB	E491T1-C1A3-CS1-H
3YS H5	III YMS H5	-	CWB	E491T1-M21A3-CS1-H
			CCS	3S, 3YS H5
3YS, 3YM H5	III YMS H5	SA3YM H5	RS	3YMS H5
			CR	3SM, 3YSM H5
3Y40S, 3Y40M H5	III Y40MS H5	-	-	_
3Y40S H5	III Y40MS H5	SA3YM H5, SA3Y40M H5	-	_
-	_	-	-	-
2YS H10	_	-	-	-
			CCS	2S, 2YS H5
2YS H5	II YMS H5	SA2YM	RS	2YMS H5
215 115	11 1105 115	SA2Y40M H5	CR	2SM, 2YSM H5
			PRS	2Y40 H5
2YM	II Y	A2YM, A2Y40M	-	_
2YS H5	II YMS H5	SA2YM H5	-	-
_	_	-	-	_
2YS H5	II YMS H5	-	CR	2SM, 2YSM H5
3Y40M H10	—	-	-	-
3YM	_	-	-	_
2YS H15	II YMS	-	-	_
2YS H15	II YMS	SA2YMH	CR	2YSM
2YS	II Y40MS	-	-	_
2YS	II Y40MS	-	-	_
_	_	-	-	_
-	IIY H5	-	-	-

2) Flux Cored Arc Welding Wires -FCAW- (2)

Type of Steel	Brand Name	NK	ABS
	SF-3M / CO2	KSW54Y40G (C) H5	4Y400SA H5
	SF-3E / CO ₂	KAW4Y42G (C) H5	4YQ420SA H5
	SF-3A / 80%Ar+20%CO2	KAW54MG (M2) KSW54Y40G (M2)	3YSA H5
	SF-3AM / 80%Ar+20%CO2	-	5YQ460SA H5
	SF-3AMSR / 80%Ar+20%CO2	_	_
	SF-36E / CO ₂	KSWL3G (C) H5 KSWL3G (C) H5-TS540M	3YSA+Mfr's H5 ¹⁾
	SF-36F / CO2	KSWL3G (C) H5	3YSA+Mfr's H5 ¹⁾
For Low Temperature Service Steel	SF-36EA / 80%Ar+20%CO ₂	_	_
Bervice Bieer	SF-47E / CO ₂	KSW63Y47G (C) H5 KAW63Y47MG (C) H5	$5Y400SA+Mfr's H5^{20}$
	SF-60L / CO2	KSW4Y50G (C) H5	-
	SF-50E / CO2	-	5YQ500SA H5
	SF-50Y / CO ₂	-	4YQ500SA H5
	SF-50A / 80%Ar+20%CO2	-	4YQ500SA H5
	SF-70A / 80%Ar+20%CO ₂	-	4YQ620SA H5
	SM-3A / 80%Ar+20%CO ₂	-	4Y400SA H5
	SM-47A / 80%Ar+20%CO2	_	5YQ460SA H5
	SM-80A / 80%Ar+20%CO ₂	_	4YQ690SA H5
	SF-1 • GP / CO ₂	KSW52Y40G (C) H5	2YSA H5, 2Y400SA H5
	SM-1F•GP (×2) / CO ₂	KAW52Y40G (C)	2YA, 2Y400A H5
For Corrosion	SM-1F•GP / CO ₂	KSW52Y40G (C) H5	2YSA H5, 2Y400SA H5
Resisting Steel	SM-1S • GP / CO ₂	KSW52Y40G (C) H5 KAW52Y40MG (C) H5	2YA/2Y400A H5, 2YSA/2Y400SA H5
	SF-55RS / CO ₂	-	2YSA H5

LR	DNV GL	BV		Others
4Y40S H5	IV Y40MS H5	_	-	_
4Y42S H5	IV Y42MS H5	_	CWB	E551T1-C1A4-CS1-H4
			CWB	E491T1-M21A4- CS1-H4
4Y40S H5	IV Y42MS H5	_	PRS	4Y42S H5
			-	-
53400 HF	V Y46MS,		PRS	5Y46S H5
5Y46S H5	(VL4-4L)(H5)	—	CWB	E551T1-M21A4-Ni1-H4
4Y42S, 4Y42srS H5	IV Y42MS H5	—	-	-
5Y40S H5	V YMS H5	SA5YM H5	KR	5YSG(C) H5
5Y40S H5	V YMS H5	_	-	-
5Y40S H5	V YMS NV (4-4L) (H5)	_	_	_
3Y47S H5	V Y46MS H5	_	CWB	E551T1-C1A6-Ni1-H4
-	-	—	-	-
-	V Y50MS H5	SA5Y50 H5	RS	5Y50SM H5
-	IV Y50MS H5	SA4Y50 H5	-	-
4Y50S H5	IV Y50MS H5	—	-	-
-	IV Y62MS H5	_	_	-
4YS H5	IV Y40MS H5	SA4Y H5	CWB	E491C-T15-M21A4-CS1-H8
			PRS	5Y46S H5
-	V Y46MS H5	_	CWB	E550T15-M21A6- Ni1-H4
-	IV Y69MS H5	_	-	-
2YS H5	-	-	-	_
2YM	-	_	_	-
2YS H5	-	_	-	
2YS H5	_	_	_	-
Mfr's ³⁰	II YMS H5	_	CCS	2YS H5

Note; 1) min.AV.CVN 34J at -60°C 2) T.S.: 570~720N/mm², min.Y.S.: 460N/mm², EL.: 22% 3) T.S.: 490~660N/mm², min.Y.S.: 375N/mm², EL.: 22%, AV.CVN 47J at 0°C

2) Stainless Flux Cored Arc Welding Wires-FCAW-(3)

Type of Steel	Brand Name	NK	ABS
	SF-308L / CO ₂	KW308LG (C)	Mfr's ¹⁾
	SF-308LK / CO2	-	$Mfr's^{2}$
	SF-309L / CO ₂	KW309LG (C)	Mfr's ³⁰
	SF-309MoL / CO2	KW309MoLG (C)-315M	Mfr's ⁴⁾
For Stainless	SF-316L / CO ₂	KW316LG (C)	Mfr's ⁵⁾
For Stainless Steel	SF-316LP / 80%Ar+20%CO2	-	-
	SF-329J3LP / CO ₂	-	AWS A5.22 E2209T1-1
	SF-2120 / CO ₂	Mfr's ⁶⁾	_
	SF-DP8 / CO ₂	KW2209G (C)	_
	SF-N309L (FCAW and Self Shielding, not GMAW)	KW309LN	$\mathrm{Mfr's}^{\scriptscriptstyle 2)}$

LR	DNV GL	BV		Others
304L S	VL308L	308L	RS	A-5
_	-	-	-	_
SS/CMn S	VL309L	309L	RS	A-9SP
SS/CMn S	NV309MoL	309Mo	-	_
316L S	NV316L	-	RS	A-6
316L S	NV316L	-	-	_
_	O-Duplex	-	-	_
_	-	-	-	_
_	-	2205	-	_
Mfr's ⁷⁾	NV309L	309L	_	_

Note: 1) min.Y.S.: 245N/mm², T.S.: 510N/mm², EL.: 35%, AV.CVN 34J at -20°C 2) min.Y.S.: 245N/mm², T.S.: 510N/mm², EL.: 35%, AV.CVN 31J at -196°C LE:0.38mm 3) min.Y.S.: 245N/mm², T.S.: 510N/mm², EL.: 30%, AV.CVN 34J at -20°C 4) min.Y.S.: 205N/mm², T.S.: 510N/mm², EL.: 20%, AV.CVN 34J at -20°C

5) min.Y.S.: 205N/mm², T.S.: 510N/mm², EL: 35%, AV.CVN 27J at -20°C

6) min. I.S.: 2051/min , I.S.: 5101/min , EL: 55%, AV.CVN 275 at =20°C

7) SS/CMn, suitable for welding stainless steel Grade(s) other than the duplex types to

any of the structural grades of ship steel for chemical use only.

3) Gas Tungsten Arc Welding Rods and Wires -GTAW-

Type of Steel	Brand Name	NK	ABS
For Mild Steel and High Tensile Strength Steel	YT-28 / Ar	KSWL3G (I)	4Y+Mfr's ¹⁾
For Corrosion Resisting Steel	YT-55RS / Ar	KSW52G (I)	2Y
	YT-308L / Ar	KY308L (I)	_
For Stainless	YT·309MoL / Ar	KY309Mo (I)	_
Steel	YT-316L/Ar	KY316L (I)	-
	YT-DP8/Ar	KY2209 (I)	_

Note: 1) min.AV.CVN 47J at -60°C

2) T.S.: 490~660N/mm², min.Y.S.: 375N/mm², EL.: 22%, AV.CVN 47J at 0°C

4) Electrogas Arc Welding Materials -EGW-

Grade	Brand Name	NK	ABS
For Mild Steel	EG-1 / SB-60V / CO ₂	KEW52	2YA
and High Tensile	YM-55H / EG-3T / SB-60VT / CO ₂	KEW53Y40	3Y400A
Strength Steel	EG-47T (×2) / SB-60VT / CO ₂	KEW63Y47	5Y470
For Low Temperature Service Steel	EG-3 / SB-60V / CO=	KEW53Y40, KEW53	4¥400

Note; 1) Approval may be restricted for use with steel treated with aluminium.

2) Approval may be restricted for use with steel treated with niobium.

LR	DNV GL	BV		Others
_	_	_	_	_
$\mathrm{Mfr's}^{^{2)}}$	-	_	CCS	2Y
304L m	—	_	-	_
-	-	-	-	_
316L m	-	-	-	_
S31803m	-	_	-	_

LR	DNV GL	BV		Others
2, 2Y ¹⁾	-	-	_	-
$3Y^{2}$, $3Y40^{2}$	-	-	_	_
3Y47 ²⁾	—	—	_	-
$4Y^{2}$, $4Y40^{2}$	IV Y40	AV4Y40	_	_

16

ype of Steel	Brand Name	NK	ABS
	YM-28 / SB-41 / CO ₂	0	0
	YM-28S / SB-41 / 80%Ar+20%CO ₂	0	0
	YM-55A / SB-41 / 80%Ar+20%CO ₂	0	0
	YM-55H / YK-CM × CO ₂	KSW53G (C)	3YSA
	YM-55H / YK-CM / SB-41 / CO ₂	0	0
	YM-55H / YK-CM / SB-41GL / CO2	0	0
	YM-55H / SF-1 / YK-CM / SB-41 / CO ₂	KAW52SPG (C)	2Y
r Mild Steel	YM-55H (×2) / YK-CM / SB-41 / CO ₂	KAW52SPG (C)	_
ıd igh Tensile	SF-1 / SB-41 / CO ₂	0	0
rength Steel	SF-1A / SB-41 / 80%Ar+20%CO ₂	0	0
	SF-3 / SB-41 / CO ₂	0	0
	SF-3Y / SB-41 / CO ₂	0	0
	SF-47E / SB-41 / CO ₂	0	0
	SM-1 / SF-1 / YK-C / SB-41 / CO ₂	_	_
	SM-1S / SB-41 / CO ₂	0	0
	FC-1 / SB-41NAS / CO ₂	0	0
	FC-1 / SB-41PNS / CO ₂	0	0
or Low	YM-55H / SB-41 / CO ₂	0	0
mperature rvice Steel	SF-36E / SB-41 / CO2	0	0

LR	DNV (DNV-GL)	BV		Others
2YS H15	_	-	-	_
2YS H15	-	-	-	_
-	-	-	-	_
-	-	-	-	-
2YS H15	II Y	-	-	-
-	II Y	-	-	-
2YA	II Y	2Y	_	_
_	II Y	-	-	_
2YS	II YMS	SA2YM H5	CR	2SM, 2YSM H
2YS, 2YM	II YMS	-	-	_
3YS	III YMS H5		CCS	3S, 3YS H5
315	III YMS Ho	_	CR	3SM, 3YSM H
3Y40S H15	-	-	-	-
3Y47S, 3Y47M H5	—	-	-	_
2A, 2YA	II YM	_	-	-
2YS	II YMS H5	-	CR	2SM, 2YSM H
2YS	II YMS	-	CR	2YSM
	II YMS			_
4Y40S H15	TV YMS	_	- 1	_
5Y40S H5	V YMS	_	_	_

Note; o: It is available for One-side welding when it is done welding procedure qualification test (WPQT). 1) T.S.: 490~660N/mm², min.Y.S.: 375N/mm², EL.: 22%, AV.CVN 47J at 0°C

Submerged Arc Welding Materials -SAW Multi-layer Welding and Both Side Welding

Type of Steel	Brand Name	NK	ABS
	Y-B / YF-15	KAW3TM	3TM
	Y-CM / YF-15	KAW53TM	3YTM
	Y-CMS / NF-100	KAW53TM	-
	Y-D / YF-15	KAW52T, 53M	2YT, 3YM
	Y-D / YF-15A	KAW52TM	-
	Y-D / YF-800 KAW1TM, 52M		2YM
	Y-D / NF-1 KAW53TM		3YTM
For Mild Steel	Y-D / NF-310	KAW53TM	3YTM
and High Tensile	Y-D / NB-55E	KAW53TM	3YTM
Strength Steel	Y-D (×2) / NB-55E	KAW53TM	3YTM
	Y-D (×2) / NSH-52M	KAW52TM	_
	Y-DS / NF-60	KAW1M	_
	Y-DS / NF-100	KAW52T, KAW53M	2YTM
	Y-E / NF-1	KAW53M	_
	Y-DM / YF-15	KAW3Y46TM	_
	Y-DM / YF-15B	KAW3Y50M	_
	Y-80M / YF-15B	JIS Z3183 S804-H4	_
	Y-DM3 (×2) / NB-55E	KAW54Y40TM	-
	Y-DM3 / NF-310	KAWL3TM KAWL3TM-TS540M	_
	Y-E / NF-310	KAWL3TM KAWL3TM-TS540M	3YTM, 3YTM+Mfr's ¹⁾
	Y-D / NB-55L	KAWL3M	3YM+Mfr's ²
	Y-DM / NB-55	-	-
	Y-DS / NB-55	KAWL3M	$3Y400M+Mfr's^{3}$
For Low	Y-3NI / NB-55LS	-	_
Temperature Service Steel	Y-CMS / NB-55	KAW5Y46M	$5Y400M+Mfr's^{5}$
	Y-DMS / NB-55	KAW4Y46M	_
	Y-DM3 / NB-60L	KAW63Y47M H10	$3Y400M+Mfr's^{6}H10$
	Y-204B / NB-250H	-	5YQ500M H5
	Y-80 / NB-80	Mfr's ⁷⁾	_
	Y-80M / NB-250H	KAW4Y69M, KAW4Y69H-VE47M-60T	5YQ690M
	Y-80J / NB-250J	KAW4Y62M H5	4.8φ:4YQ690M+Mfr's H5 3.2~4.0φ:5YQ690M H5
For Stainless Steel	Y-DP8 / BF-30	KD2209 TS Equiv	_
Steel	YT-308L / BF-300M	KU308LM	_
For Special Alloy	NITTETSU FILLER 196 / NITTETSU FLUX 10H	KAWL91M, KAWL91M-YP400M- TS690M	${ m Mfr's}^{{}^{\scriptscriptstyle 11}\!{}}$

LR	DNV GL	BV	Others		
3TM	III TM	A3TM	-	_	
3YTM	III YTM	A2YTM	-	_	
3YTM	-	_	-	_	
2YTM	II YT, III YM	A2YTM	CR	2YT, 3YM	
_	-	_	-	_	
1T, 2YM	-	A2YM	-	_	
3YTM	-	_	-	_	
3YTM	III YTM	—	-	—	
3YTM	III YTM	_	-	_	
3YTM	III YTM	_	-	_	
_	-	A2Y TM	-	_	
_	-	_	-	_	
2YT 3YM	-	_	-	_	
_	-	_	-	_	
_	-	_	-	_	
-	-	-	KR	3Y50M	
-	-	-	KR	JIS Z 3183 S804-H	
-	IV Y40TM	-	-	_	
-	_	_	-	-	
4YT, 5Y40TM H15	V YTM (VL4-4L)	A5YTM	_	_	
4Y40M H15	V YM (VL4-4L)	_	_	_	
_	V YT (VL4-4L)	5YT	_	_	
5Y40M H10	V YM (VL4-4L)	A5Y40M	_	_	
_	V YM (VL4-4L)	A3YM+Mfr's40	_	_	
5Y46M H10	V Y46M	_	_	_	
_		_	_	_	
3Y47M H10	V YM (VL4-4L)	_	_	_	
_	V Y50M H5	A5Y50M H5	_	_	
_	-	_	_	_	
_	V Y69M	_	-	_	
_	IV Y69M+Mfr's ⁹⁾ H5	_	CCS	4Y69M+Mfr's ⁹⁾ H5	
_	$\mathrm{Mfr's}^{10)}$	A2205M	-	_	
-	-	—	_	_	
9Ni M	NV1.5Ni to NV9Ni (CVN at -196°C)	Mfr's ¹²⁾ AN50 M	CCS	9Ni M	

7) min.Y.S.: 690N/mm², T.S.: 790N/mm², EL: 15%, AV.CVN 34J at -40°C (Each. 27J) 8) min.AV.CVN 69J at -40°C and AV.CVN 47J at -60°C

9) min.AV.CVN 47J at -60°C

10) min.Y.S.: 450N/mm², T.S.: 620N/mm², EL.: 25%, AV.CVN 27J at -20°C 11) min.Y.S.: 375N/mm², T.S.: 590N/mm² (Butt: 630MPa), EL.: 25%, AV.CVN 27J at -196°C

12) min.Y.S.: 380N/mm², T.S.: 600N/mm², EL.: 25%, AV.CVN 34J at -196°C

2) min.AV.CVN 40J at -60°C 3) min.AV.CVN 41J at -60°C

4) min.AV.CVN 27J at $-60^{\circ}\mathrm{C}$

5) T.S.: 570~690N/mm², min.Y.S.: 460N/mm², EL: 22%
6) T.S.: 570⁻720N/mm², min.Y.S.: 460N/mm², EL: 20%, AV.CVN 64J at-20°C

16

2) One-Side Submerge Arc Welding Materials

Type of Steel	Brand Name	NK	ABS		LR	DNV GL	BV		Others
	Y-D / NB-55E / YK-D / SB-51	KAW52SP	2Y		_	-	A2YU	-	_
	Y-DL / NSH-50M / YK-D / SB-51	KAW52MP	_		_	_	_	KR	2YMR
	Y-DL (×2) / NSH-50M / YK-D / SB-51	KAW52SP	-		_	-	_	-	-
	Y-DL (×2) / NSH-50M / NSH-1RM	KAW52SP	_		2A, 2YA	-	_	-	_
	Y-DL (×3) / NSH-50M / NSH-1RM	KAW52SP	2Y		2A, 2YA	ΠΥ	A2YM	RS	2Y
								KR	2YSR
								CCS	2, 2Y
								RINA	2YU
For Mild Steel and High Tensile Strength Stee	Y-DL (×4) / NSH-50M / NSH-1RM	KAW52SP	2Y		2A, 2YA	II Y	A2YU	ccs	2, 2Y
	Y-DL (×4) / NSH-50M / NSH-1RM / YK-D	KAW53SP	3Ү		ЗҮА	III Y	A3YU	-	_
	Y-DL (×2) / NSH-55ER / NSH-1RM	KAW53SP	3Ү		ЗҮА	III Y	A3YU	CCS	3Ү
	Y-DL (×3) / NSH-55ER / NSH-1RM	KAW53Y40SP	3Ү		ЗҰА	III Y	A3YU	CCS RS	3Y 3Y
	Y-DL (×4) / NSH-55ER / NSH-1RM	KAW53SP	3Ү		ЗҮА	III Y	A3YU	ccs	3Ү
	Y-DL (×4) / NSH-55ER / NSH-1RM / YK-D	KAW53Y40SP	3Y400		_	III Y40	_	-	_
	Y-DM3 / Y-DL (×2) / NSH-55EM / NSH-1RM	KAW53Y40SP	3Y400		3YA, 3Y40A	A III Y40	A3Y40U	CCS	3Y, 3Y40
					31A, 3140A			RINA	3Y40U
	Y-DM3 / Y-DL (×3) / NSH-55EM / NSH-1RM	KAW53Y40SP	3Y400		_	_	_	-	_
	Y-DM3 / Y-DL (×2) / NSH-55EM / NSH-1RM / YK-CM	KAW53Y40SP	_		_	_	_	_	_
	Y-DM3 / Y-DL (×2) / NSH-55EM / NSH-1RM / YK-CM	_	-		_	-	_	CCS	3Y42

324

16

Memo

NIPPON STEEL WELDING & ENGINEERING CO., LTD.

https://www.weld.nipponsteel.com

Head Office	Shingu Bldg., 2-4-2 Toyo, Koto-ku, Tokyo, JAPAN 135-0016 [Tel] +81-3-6388-9000 [Fax] +81-3-6388-9160 [E-mail] overseas@weld.nipponsteel.com
Narashino Plant	7-6-1, Higashinarashino, Narashino-City, Chiba, JAPAN 275-0001 [Tel] +81-47-479-1171 [Fax] +81-47-475-6430
Hikari Plant	4-2-1 Asae, Hikari-City, Yamaguchi, JAPAN 743-0021 [Tel] +81-833-71-3390 [Fax] +81-833-71-3394
R&D Division	Futtsu Research Institute In Joining Research Laboratory Steel Research Laboratories, Technical Developm Bureau of Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-City, Chiba, JAPAN 293-8511 [Tel] +81-439-80-2622 [Fax] +81-439-80-2748
Narashino Operating Division	7-6-1, Higashinarashino, Narashino-City, Chiba, JAPAN 275-0001 Machinery & Engineering Unit [Tel] +81-47-479-4111 [Fax] +81-47-479-1434
	Plasma Welding Machinery Unit [Tei] +81-47-479-4138 [Fax] +81-47-479-2968
	Optical Fiber Unit [Tel] +81-47-479-1179 [Fax] +81-47-479-4371
Shanghai Rep. Office	Room 403-39, 4th floor, KIRIN PLAZA, Lane 666, Gubei Road, Changning District, Shanghai, 200336, CHINA [Tel] +86-21-2216-6561
Russia Rep. Office	406, 7-K, Tallinskaya Str., St. Petersburg, RUSSIA 【Tel】+7-812-242-94-14
Subsidiary	
Thailand	NIPPON STEEL WELDING (THAILAND) Co., Ltd. Eastern Seaboard Industrial Estate Soi 3 Zone A 300/41 T. Tasit A. Pluakdaeng Rayong 21140 THAILAND [Tel] +66-38-656-212 [Fax] +66-38-656-233
Other contact inf	formation
Korea	Secul B-1601, E-Staevill 323-9 Shinjung-Dong, Yangchun-Gu, Secul, 08093, KOREA [Tel] +82-2-2648-6578 [Fax] +82-2-2648-6579
	Pusan Room 504, Sungam B/D, 1436-2, Onchun 2-Dong, Donglae-Gu, Busan, 47734, KOREA [Tei] +82-51-553-9650 [Fax] +82-51-556-9650

1	Mild Steel·490~550MPa High Tensile Strength Steel
2	570~950MPa High Tensile Strength Steel
3	Low Temperature Service Steel
4	Heat Resisting Steel
5	Boiler Tube/Pipe
6	Atmospheric Corrosion Resisting Steel
7	Sulphuric Acid Corrosion Resisting Steel
8	Sea Water Corrosion Resisting Steel
g	Stainless Steel
10	Special Alloy
11	Surfacing Cast Iron
12	Electroslag Welding Materials
13	Electrogas Welding Materials
14	High Efficiency Welding Process
15	Welding Machine and Equipment
16	Approval List of Welding Materials