PRODU 0

PRODUCT CATALOG

WELDREAM

NIPPON STEEL WELDING & ENGINEERING CO., LTD.

NIPPON STEEL WELDING & ENGINEERING CO., LTD.

Mild Steel·490~550MPa High Tensile Strength Steel	1
570~950MPa High Tensile Strength Steel	2
Low Temperature Service Steel	3
Heat Resisting Steel	4
Boiler Tube/Pipe	5
Atmospheric Corrosion Resisting Steel	6
Sulphuric Acid Corrosion Resisting Steel	7
Sea Water Corrosion Resisting Steel	8
Stainless Steel	g
Special Alloy	10
Surfacing Cast Iron	11
Electroslag Welding Materials	12
Electrogas Welding Materials	13
High Efficiency Welding Process	14
Welding Machine and Equipment	15
Packaging	16
Approval List of Welding Materials	17

NIPPON STEEL

PRODUCT CATALOG

NIPPON STEEL WELDING & ENGINEERING CO., LTD.

- Please note the following points in the use of this catalog.
 - 1. Classification numbers either by JIS (Japanese Industrial Standards) or AWS (American Welding Society) are given to the products except for some types which are classified into neither of them.

There are three different ways in which the classification numbers are given depending on the extent that the products meet the classifications.

(1) The classification number without an mark;

(i.e. JIS Z 3211 E4319)

It means that the product meets the classification requirements and that JIS Mark is usable on the product based on the JIS mark system.

(2) The classification number with the mark "☆"; (i.e. *JIS Z 3214 E49J03-NCCAU, *AWS 5.1 E7016)

It means that the product meets the classification requirements but that the JIS Mark system and AWS are not authentication to the classification.

(3) The classification number with the mark"★"; (i.e. ★AWS A5.1 E7016)

It means that the product meets most of the classification requirements. However, there is for example a partial deviation in chemical composition.

2. The symbols of welding consumables are determined as following from the initial letter of the welding process.

(1) FCAW: Flux Cored Arc Welding (flux cored wires)

(2) SMAW: Shielded Metal Arc Welding (covered arc welding electrodes)

(3) SAW: Submerged Arc Welding (fluxes, wires, cut wires and backing materials)

(4) GMAW: Gas Metal Arc Welding (solid wires)

(5) GTAW: Gas Tungsten Arc Welding (rods and solid wires)

(6) ESW: Electroslag Welding (solid wires and fluxes)

(7) EGW: Electrogas Welding (flux core wires and backing materials)

- 3. The definition of the "Weld Metal" described in this catalog is a weld metal which has not been diluted by base metal except in the case of SAW.
- Besides the products listed in this catalog, we will make every effort to manufacture welding consumables and/or machinery tailored to customers' requirements.
- 5. The status of our ship approvals may change from time to time. Your kind confirmation for up-to-date information will be appreciated.
- 6. The specifications of the products included in this catalog are subject to change without prior notice.
- WELDREAM is a trademark of NIPPON STEEL WELDING & ENGINEERING CO., LTD.
- NSH is a trademark of NIPPON STEEL WELDING & ENGINEERING CO., LTD.
- CNCW is a trademark of NIPPON STEEL WELDING & ENGINEERING CO., LTD.
- WEL-TEN is a trademark of NIPPON STEEL CORPORATION.
- S-TEN is a trademark of NIPPON STEEL CORPORATION.
- MARILOY is a trademark of NIPPON STEEL CORPORATION.
- NSSC is a trademark of NIPPON STEEL STAINLESS STEEL CORPORATION.
- INCONEL is a trademark of HUNTINGTON ALLOYS CORPORATION.
- INCO-WELD is a trademark of HUNTINGTON ALLOYS CORPORATION.
- INCOLOY is a trademark of HUNTINGTON ALLOYS CORPORATION.
- HCM2S is a trademark of NIPPON STEEL CORPORATION.
- SUPER304H is a trademark of NIPPON STEEL CORPORATION.
- NSSC 2120 is a trademark of NIPPON STEEL STAINLESS STEEL CORPORATION.
- NITTETSU is a registered trademark or trademark of NIPPON STEEL CORPORATION, and our company is licensed.
- YAWATA is a registered trademark or trademark of NIPPON STEEL CORPORATION, and our company is licensed.

INDEX 1) Mild Steel·490~550MPa High Tensile Strength Steel

Waldingerenthad	Brand Name	Specific	ation	Page
Welding method	Brand Name	JIS	AWS	
	SF-1	Z 3313 T49J0T1-1CA-UH5	☆A5.20 E71T-1C-H4	20
	FC-1	Z 3313 T49J0T1-1CA-U	☆A5.20 E71T-1C	22
	SF-1E	Z 3313 T492T1-1CA-UH5	☆A5.20 E71T-1C	21
	SF-3	Z 3313 T492T1-1CA-N1-UH5	☆A5.20 E71T-12C-H4	24
	SF-1A	Z 3313 T49J0T1-1MA-UH5	☆A5.20 E71T-1M-H4	25
	SF-3M	_	☆A5.20 E71T-9C-JH4	23
	SF-3A	Z 3313 T492T1-1MA-UH5	☆A5.20 E71T-9M-JH4	20
Flux Cored Arc	SF-3E	_	☆A5.29 E81T1-GC-H4	3
Welding Wires	SM-1F	Z 3313 T49J0T1-0CA-UH5	☆A5.20 E70T-1C-H4	28
	FCM-1F	Z 3313 T49J0T1-0CA-U	☆A5.20 E70T-1C	29
	SM-1	Z 3313 T49J0T15-0CA-G-UH5	☆A5.18 E70C-GC	2
	SM-1S	Z 3313 T49J0T1-0CA-UH5	☆A5.20 E70T-1C-H4	34
	SX-26	Z 3313 T49J0T15-0CA-UH5	☆A5.18 E70C-3C-H4	3
	SX-55	Z 3313 T550T15-0CA-UH5	☆A5.18 E80C-G-H4 ☆A5.28 E80C-G H4	33
	SM-3A	_	☆A5.18 E70C-GM-H4	30
	S-03	Z 3211 E4303	☆A5.1 E6013	4
	NS-03Hi	Z 3211 E4303-U	☆A5.1 E6013	4
	S-03Z	Z 3211 E4303-U	☆A5.1 E6013	4
	FT-51	Z 3211 E4313	☆A5.1 E6013	3
	L-43LH	Z 3211 E4316	_	4
	NITTETSU-16W	Z 3211 E4316	☆A5.1 E7016	3
	S-16	Z 3211 E4316-U	☆A5.1 E7016	4
	A-10	Z 3211 E4319	☆A5.1 E6019	4
	A-14	Z 3211 E4319	☆A5.1 E6019	4
	A-17	Z 3211 E4319-U	☆A5.1 E6019	4
Covered	S-16V	Z 3211 E4340-U	☆A5.1 E7048	4
Arc Welding Electrodes	S-16LH	Z 3211 E4916	☆A5.1 E7016	4
Electrodes	EX-55	Z 3211 E4916-U	☆A5.1 E7016	4
	L-55	Z 3211 E4916-U	☆A5.1 E7016	3
	L-55LH	Z 3211 E4916-U	☆A5.1 E7016	3
	7018	Z 3211 E4916	☆A5.1 E7018	4
	7018-1	_	☆A5.1 E7018-1	4
	EX-50F	Z 3211 E4940-G	☆A5.1 E7024	4
	M-50G	Z 3211 E4940-G	★A5.1 E7024	4
	TW-50	Z 3211 E4948	☆A5.1 E7048	4
	L-53	Z 3211 E5716-U	☆A5.1 E7016	4
	LM-55G	_	☆A5.1 E7028	4

NITTETSU is a registered trademark or trademark of NIPPON STEEL CORPORATION, and our company is licensed.

Welding method	Brand Name	Down d Name		Pag
welding method	Brand Name	JIS	AWS	Pa
	NF-45×Y-B	☆Z 3183 S422-S	☆A5.17 F6A2-EM12	1
	YF-15×Y-D	☆Z 3183 S50J2-H	☆A5.17 F7A4-EH14, F7P4-EH14	
	NF-45×Y-D	☆Z 3183 S501-H	☆A5.17 F7A0-EH14	
	YF-800×Y-D	☆Z 3183 S501-H	☆A5.17 F7A0-EH14	
	NF-60×Y-DS	☆Z 3183 S501-H	☆A5.17 F7A0-EH14	
	NF-80×Y-DS	☆Z 3183 S501-H	☆A5.17 F7A2-EH14, F6P2-EH14	
	YF-15A×Y-D	☆Z 3183 S50J2-H	☆A5.17 F7A4-EH14	
	NF-1×Y-D	☆Z 3183 S532-H	☆A5.17 F7A4-EH14, F7P2-EH14	
	NF-1×Y-DM3	☆Z 3183 S58J2-H	☆A5.23 F8A4-EG-G, F8P2-EG-G	
Submerged Arc Welding	NF-11H×Y-D	☆Z 3183 S502-H	☆A5.17 F7A4-EH14	
Arc weiding Materials	NF-11H×Y-DM3	-	☆A5.23 F7A6-EG-G	
materials	NF-11H×Y-E		☆A5.23 F8A4-EG-G	
	YF-15B×Y-DM3	☆Z 3183 S532-H	☆A5.23 F7A4-EG-G, F7P4-EG-G	
	NF-100×Y-DS	☆Z 3183 S532-H	☆A5.17 F7A6-EH14, F7P6-EH14	
	YF-15×Y-CM	☆Z 3183 S50J2-H	☆A5.23 F8A2-EG-A3, F7P2-EG-A3	
	YF-38×Y-D	☆Z 3183 S502-H	☆A5.17 F7A0-EH14	
	NF-80×Y-CMS	☆Z 3183 S502-H	☆A5.23 F7A2-EA4-A2, F7P2-EA4-A2	
	NSH-53Z×Y-DL	☆Z 3183 S532-H	_	
	NF-1×Y-E	☆Z 3183 S532-H	★A5.23 F8A4-EG-G, ☆F8P2-EG-G	
	YM-26	Z 3312 YGW11	☆A5.18 ER70S-G	Τ
	YM-28	Z 3312 YGW12	☆A5.18 ER70S-6	
	YM-28S	Z 3312 YGW15	☆A5.18 ER70S-G	
	YM-TX	_	☆A5.18 ER70S-G	
	YM-SCM	Z 3312 G49A0C16	☆A5.18 ER70S-3	
Gas Metal Arc	YM-25	Z 3312 YGW16	☆A5.18 ER70S-3	
Welding Wires	YM-25S	Z 3312 YGW16	☆A5.18 ER70S-3	
	YM-24S	Z 3312 G43A2M0	-	
	YM-24T	Z 3312 YGW16	-	
	YM-22Z	-	-	
	YM-28Z	Z 3312 G49A0C0	-	
	YM-55AZ		☆A5.18 ER70S-G	
Gas Tungsten Arc Welding Wires	YT-28	☆Z 3316 W49AP2U12	☆A5.18 ER70S-6	

2) 570~950MPa High Tensile Strength Steel

	-	_		
Welding method	Brand Name	Specific	ation	Page
weiding method	brand Name	JIS	AWS	rag
	SF-60	Z 3313 T59J1T1-1CA- N2M1-UH5	☆A5.29 E81T1-GC-H4	74
	SF-60A	Z 3313 T59J1T1-1MA- N2M1-UH5	☆A5.29 E81T1-GM-H4	74
	SF-60T	☆Z 3313 T59J1T1-1CA-G- UH5	☆A5.29 E81T1-GC-H4	75
Flux Cored Arc Welding Wires	SF-70A	_	☆A5.29 E101T1- GM-H4	76
	SF-80AM	_	☆A5.29 E111T1- K3M-H4	77
	SF-80A		☆A5.29 E111T1- GM-H4	78
	SM-80A	—	☆A5.28 E110C-G-H4	- 79
	L-60	Z 3211 E5916-N1M1U	☆A5.5 E8016-G	80
	L-60W	Z 3211 E5916-N1M1	☆A5.5 E8016-G	81
	L-60S	Z 3211 E5716-G	☆A5.5 E8016-G	86
	L-62CF	Z 3211 E6216-N1M1	☆A5.5 E9016-G	82
Covered	L-60LT	Z 3211 E6216-G	☆A5.5 E9016-G	83
Arc Welding	L-62	Z 3211 E6216-G	☆A5.5 E9016-G	86
Electrodes	L-74S	Z 3211 E6916-G	☆A5.5 E10016-G	86
	L-80	Z 3211 E7816-N5CM3U	☆A5.5 E11016-G	84
	L-80SN	Z 3211 E7816-N9M3U	☆A5.5 E11016-G	8
	L-80EL	Z 3211 E7816-N5CM3U	☆A5.5 E11016-G	86
	L-100EL	☆WES410-DK9016		8
	NF-820×Y-DM	☆Z 3183 S582-H	☆A5.23 F8A0-EA3-A3	88
	NB-60L×Y-DM3	_	☆A5.23 F8A8-EG-G, F8P8-EG-G	89
	YF-15B×Y-DM	☆Z 3183 S624-H4	☆A5.23 F9A6-EA3-A3, F8P2-EA3-A3	90
Submerged Arc Welding	NF-250×Y-204B	_	☆A5.23 F9A6-EG-G, F8P6-EG-G	96
Materials	NB-250H×Y-204B	_	☆A5.23 F9A8-EG-G, F9P8-EG-G	91
	NB-250H×Y-80M	☆Z 3183 S804-H4	☆A5.23 F11A10-EG-M3	92
	NB-250J×Y-80J	☆Z 3183 S804-H4	☆A5.23 F11A10-EG-G	93
	NB-80×Y-80	☆Z 3183 S80J4-H4	☆A5.23 F12A4-EG-G	94
	YM-60C	Z 3312 G59JA1UC3M1T	☆A5.28 ER80S-G	98
	YM-60A	Z 3312 G59JA1UM3M1T	☆A5.28 ER80S-G	99
	YM-80S	_	☆A5.28 ER90S-G	100
Gas Metal Arc	YM-70CS	Z 3312 G69A2UCN1M2T	☆A5.28 ER100S-G	10
Welding Wires	YM-70C	Z 3312 G69A2UCN4M3T	☆A5.28 ER100S-G	104
0	YM-70A	Z 3312 G69A3UMN4M3T	☆A5.28 ER100S-G	104
	YM-80C	Z 3312 G78A2UCN5M3T	☆A5.28 ER110S-G	102
	YM-80A	_	☆A5.28 ER110S-G	10
	YT-60	☆Z 3316 W59AP2U34M3	☆A5.28 ER80S-G	100
Gas Tungsten Arc Welding	YT-70	☆Z 3316 ₩69AP2UN4M3T	☆A5.28 ER100S-G	100
Wires	YT-80A	☆Z 3316 W78AP2UN5C1M3T	☆A5.28 ER110S-G	108

3) Low Temperature Service Steel

Wolding mothed	Brand Name	Specific	ation	Por
Welding method	Brand Name	JIS	AWS	Pag
	SF-36F	Z 3313 T496T1-0CA-N1-H5	☆A5.29 E70T1-GC-H4	110
	SF-36E	Z 3313 T496T1-1CA-N3-H5	☆A5.29 E81T1- K2C-H4	111
	SF-3AM	_	☆A5.29 E81T1- Ni1M-H4	111
Flux Cored Arc	SF-3AMSR	_	☆A5.29 E71T1-GM-H4	11
Welding Wires	SF-47E	_	☆A5.29 E81T1-Ni1C- JH4	11
	SM-47A	_	☆A5.28 E80C-Ni1-H4	11
	SF-50E	_	☆A5.29 E91T1-Ni2C- JH4	11
	SF-50A	_	☆A5.29 E91T1- K2M-H4	11
	L-55SN	_	☆A5.5 E7016-G	11
	L-F80	-	☆A5.5 E8018-G	12
	N-12M	—	☆A5.5 E8016-C1	11
Covered	N-13NM	Z 3211 E4916-N7PUL	☆A5.5 E7016-C2L	12
Arc Welding	N-5F	Z 3311 E4928-GAP	_	12
Electrodes	N-11	Z 3311 E5516-3N3APL	☆A5.5 E8016-G	12
	N-12	Z 3311 E5516-N5APL	☆A5.5 E8016-C1	12
	N-13	Z 3311 E5516-N7L	☆A5.5 E8016-C2	12
	N-16	Z 3311 E5516-N13APL	☆A5.5 E8016-G ☆A5.17 F7A8-EH14.	12
	NB-55×Y-DS	_	F7P8-EH14	12
	NB-55E×Y-D	_	☆A5.17 F7A8-EH14	12
	NB-55LS×Y-3NI	_	☆A5.23 F7A10-EG-Ni3	12
	NB-55L×Y-D	_	☆A5.23 F7A8-EG-G, F7P8-EG-G	12
	NB-55E×Y-DM3	_	☆A5.23 F8A4-EG-G	12
Submerged	NB-60L×Y-DM3	_	☆A5.23 F8A8-EG-G, F8P8-EG-G	12
Arc Welding	NSH-60×Y-D	☆Z 3183 S582-H	☆A5.23 F8A4-EH14-G	13
Materials	NF-310×Y-E	_	☆A5.23 F8A8-EG-G, F8P4-EG-G	13
	NF-310×Y-DM3	_	☆A5.23 F8A8-EG-G, F8P4-EG-G	13
	NB-55E×Y-CM	_	_	13
	NB-55×Y-CMS	_	☆A5.23 F8A8-EA4-A4 F8P8-EA4-A4	13
	NB-55×Y-DM	_	☆A5.23 F9A8-EA3-G F9P8-EA3-G	13
	YM-28E	Z 3312 G49AP3UM12	☆A5.18 ER70S-G	13
	YM-36E	Z 3312 G49AP6M17	☆A5.18 ER70S-G	13
Gas Metal Arc	YM-55H	Z 3312 G55AP4C0	★A5.28 ER80S-G	13
Welding Wires	YM-1N	Z 3312 G57AP6MN2M1T	☆A5.28 ER80S-G	13
	YM-3N	Z 3312 G49AP6UMN7	☆A5.28 ER80S-G	13
	YM-69F	☆Z 3312 G78A6UG0	☆A5.28 ER120S-G	13
Gas Tungsten Arc Welding Wires	YT-28E	☆Z 3316 W49AP4U12	☆A5.18 ER70S-G	13

4) Heat Resisting Steel

	D IN	Specific	ation	
Welding method	Brand Name	JIS	AWS	Page
	N-0S	_	☆A5.5 E7016-A1	138
	N-1S	_	☆A5.5 E8016-B2	139
	CM-1A	_	☆A5.5 E8016-B2	139
Covered	N-2S	_	☆A5.5 E9016-B3	140
Arc Welding	N-2SM	_	☆A5.5 E9016-B3	142
Electrodes	CM-2A	_	☆A5.5 E9016-B3	140
	N-3	_	☆A5.5 E9016-G	142
	N-P31	_	☆A5.5 E9016-G	142
	N-P32	_	☆A5.5 E9016-G	142
	NF-250×Y-511	☆Z 3183 S642-1CM	☆A5.23 F8P2-EG-B2	144
	NB-250M×Y-521H	☆Z 3183 S642-2CM	☆A5.23 F9P2-EG-B3	145
Submerged	NB-2CM×Y-521	☆Z3183 S642-2CM	☆A5.23 F9P2-EB3-B3	146
Arc Welding	NF-250×Y-204	☆Z 3183 S642-MN	☆A5.23 F9P6-EG-G	147
Materials	NF-1×Y-DM	☆Z 3183 S642-H4	☆A5.23 F9A2-EA3-A3, F9P0-EA3-A3	148
	NB-1CM×Y-511(S)	☆Z3183 S642-1CM	☆A5.23 F9P2-EB2-B2	148
	YM-505	☆Z 3317 G49C-3M3T	☆A5.28 ER80S-G	150
Gas Metal Arc	YM-511	☆Z 3317 G55C-1CMT1	☆A5.28 ER80S-G	151
Gas Metal Arc Welding Wires	YM-511A	☆Z 3317 G55M-1CM3	☆A5.28 ER80S-G	151
weiding wires	YM-521	☆Z 3317 G62C-2C1M3	☆A5.28 ER90S-G	152
	YM-521A	☆Z 3317 G62M-2C1M2	☆A5.28 ER90S-G	152
Gas Tungsten	YT-505	☆Z 3317 W55-G	☆A5.28 ER80S-G	153
Arc Welding	YT-511	☆Z 3317 W55-1CM3	☆A5.28 ER80S-G	153
Wires	YT-521	☆Z 3317 W62-2C1M2	☆A5.28 ER90S-G	153

5) Boiler Tube/Pipe Steel

Walding mathed	D. IN	Specific	ation	D
Welding method	Brand Name	JIS	AWS	Page
	N-0S	_	☆A5.5 E7016-A1	156
Covered	N-1S	_	☆A5.5 E8016-B2	156
Arc Welding	N-2S	_	☆A5.5 E9016-B3	156
Electrodes	N-HCM2S	_	_	156
	N-HCM12A	_	_	156
	YT-HCM2S	☆Z 3317 W57-2CMWV-Ni	_	158
	YT-9ST	☆Z 3317 W62-9C1MV1	A5.28 ER90S-G	158
Gas Tungsten	YT-HCM12A	☆Z 3317 W69-10CMWV-Cu	_	158
Arc Welding	YT-HR3C	_	_	158
Wires	T-HR3C	_	_	158
	YT-304H	_	_	160
	T-304H	_	_	160

6) Atmospheric Corrosion Resisting Steel

Welding method	D. IN	Specific	ation	D
	Brand Name	JIS	AWS	Pag
Flux Cored Arc	SF-50W	☆Z 3320 T49J0T1-1CA- NCC1-UH5	☆A5.29 E71T1-GC-H4	162
Welding Wires	SF-60W	☆Z 3320 T57J1T1-1CA- NCC1-UH5	☆A5.29 E81T1- W2C-H4	163
	CT-03Cr	☆Z 3214 E49J03-NCCAU	_	16
Covered	CT-16Cr	☆Z 3214 E49J16-NCCAU	☆A5.5 E7016-G	16
Covered Arc Welding	CT-16VCr	_	☆A5.5 E7016-G	16
Electrodes	CT-26MCr	_	_	16
Licenoues	CT-60Cr	☆Z 3214 E57J16- NCC1AU	☆A5.5 E8016-G	16
	NF-820×Y-CNCW	☆Z 3183 S50J2-AW1	☆A5.23 F7A0-EG-G	16
Submerged	YF-15B×Y-CNCW	☆Z 3183 S50J2-AW1	☆A5.23 F7A4-EG-G	16
Arc Welding	NF-310×Y-CNCW	☆Z 3183 S50J2-AW1	☆A5.23 F7A4-EG-G	16
Materials	NF-820×Y-60W	☆Z 3183 S582-AW1	☆A5.23 F8A0-EG-G	16
	YF-15B×Y-60W	☆Z 3183 S58J2-AW1	☆A5.23 F8A2-EG-G	16
G . M . 14	YM-55W	☆Z 3315 G49JA0UC1-NCCJ	☆A5.28 ER80S-G	16
Gas Metal Arc	YM-60W	☆Z 3315 G57JA1UC1-NCCJ	☆A5.28 ER80S-G	16
Welding Wires	FGC-55	☆Z 3315 G49J0UC1-CCJ	☆A5.28 EG80S-G	16

7) Sulphuric Acid Corrosion Resisting Steel

Welding method	D. IN.	Specific	ation	D
	Brand Name	JIS	AWS	-Page
Flux Cored Arc	SF-1ST	_	_	172
Welding Wires	FC-23ST	_	_	173
	ST-16M	Z 3211 E4916-G	☆A5.1 E7016-G	174
Covered	ST-03Cr	Z 3211 E4903-G	_	176
Arc Welding	ST-16Cr	Z 3211 E5516-G	☆A5.5 E7016-G	176
Electrodes	ST-03CrA	Z 3211 E4903-G	_	176
	ST-16CrA	Z 3211 E4916-G	☆A5.5 E7016-G	176
Submerged Arc Welding Meterial	NB-1ST×Y-1ST	_	_	178
Gas Metal Arc Welding Wires	YM-W4	_	_	180
Gas Tungsten Arc	YT-1ST	_	_	182
Welding Wires	YT-W4	_	_	183

8) Sea Water Corrosion Resisting Steel

W 11	Brand Name	Specification		D
Welding method	Brand Name	JIS	AWS	Page
Flux Cored Arc Welding Wires	SF-55RS	_	☆A5.29 E81T1-GC-H4	186
Covered Arc Welding Electrodes	RS-55	Z 3211 E4916-G	☆A5.5 E8016-G	188
Gas Metal Arc	YM-W4	—	—	190
Welding Wires	YM-55RSA	_	_	190
Gas Tungsten Arc	YT-W4	_	—	192
Welding Wires	YT-55RS	_	_	192

9) Stainless Steel

Welding method	Brand Name	Specifi	cation	Pag
weiding method	Dranu Ivaine	JIS	AWS	1 4
	SF-308	Z 3323 TS308-FB0	☆A5.22 E308T0-1	20
	SF-308LK	Z 3323 TS308L-FB1	☆A5.22 E308LT1-1J	19
	SF-308L	Z 3323 TS308L-FB0	☆A5.22 E308LT0-1	19
	SF-308LK	Z 3323 TS308L-FB1	☆A5.22 E308LT1-1J	19
	SF-308LP	Z 3323 TS308L-FB1	☆A5.22 E308LT1-1	20
	SF-309L	Z 3323 TS309L-FB0	☆A5.22 E309LT0-1	19
	SF-309LP	Z 3323 TS309L-FB1	☆A5.22 E309LT1-1	20
	SF-309MoL	Z 3323 TS309LMo-FB0	☆A5.22 E309LMoT0-1	20
Flux Cored Arc	SF-309MoLP	☆Z 3323 TS309LMo-FB1	☆A5.22 E309LMoT1-1	20
Welding Wires	SF-N309L	Z 3323 TS309L-FN0	☆A5.22 E309LT0-3	19
weiding wires	SF-316L	Z 3323 TS316L-FB0	☆A5.22 E316LT0-1	20
	SF-316LP	Z 3323 TS316L-FB1	☆A5.22 E316LT1-1	20
	SF-317L	Z 3323 TS317L-FB0	☆A5.22 E317LT0-1	20
	SF-2120	_	_	20
	SF-DP8	Z3323 TS2209-FB0	☆A5.22 E2209T0-1	20
	FC-DP8	Z3323 TS2209-FB0	☆A5.22 E2209T0-1	20
	SF-DP3	Z 3323 TS329J4L-FB0	-	20
	SF-DP3W	_	☆A5.22 E2594T0-1	20
	FCM-430NL	_	_	20
	S-308-R	Z 3221 ES308-16	☆A5.4 E308-16	20
	S-308L·R	Z 3221 ES308L-16	☆A5.4 E308L-16	20
	S-309·R	Z 3221 ES309-16	☆A5.4 E309-16	20
	S-309L·R	Z 3221 ES309L-16	☆A5.4 E309L-16	20
	S-309M·R	Z 3221 ES309Mo-16	☆A5.4 E309Mo-16	2
	S-309ML·R	Z 3221 ES309LMo-16	☆A5.4 E309LMo-16	2
	S-310·R	☆Z 3221 ES310-16	☆A5.4 E310-16	2
	S-316·R	Z 3221 ES316-16	☆A5.4 E316-16	2
	S-316L·R	Z 3221 ES316L-16	☆A5.4 E316L-16	2
	S-316LN·R	2 3221 103101 10	AND.4 E010E 10	2
Covered	S-316CL·R	☆Z 3221 ES316LCu-16		2
Arc Welding	S-317L·R	☆Z 3221 ES310LCu 10	☆A5.4 E317L-16	2
Electrodes	S-347·R	Z 3221 ES347-16	☆A5.4 E347-16	2
	S-347L·R	☆Z 3221 ES347 16	☆A5.4 E347 16	2
	S-347AP·R	XZ 3221 E5347E 10	WA0.4 E047L 10	2
	S-170		_	2
			_	
	S-2120·R			2
	S-DP8	Z 3221 ES2209-16	☆A5.4 E2209-16	2
	S-DP3	Z 3221 ES329J4L-16	_	2
	S-DP3W		-	2
	S-410Nb	Z 3221 ES409Nb-16	☆A5.4 E409Nb-16	2
	S-430Nb	☆Z 3221 ES430Nb-16	★A5.4 E430-16	2
	Y-308×BF-300M	☆Z 3324 YWS308	☆A5.9 ER308	2
	Y-308L×BF-300M	☆Z 3324 YWS308L	☆A5.9 ER308L	2
	Y-304N×BF-308N2		-	2
	Y-309×BF-300M	☆Z 3324 YWS309	☆A5.9 ER309	2
	Y-309×BF-300F	☆Z 3324 YWS309	☆A5.9 ER309	2
Submerged	Y-316×BF-300M	☆Z 3324 YWS316	☆A5.9 ER316	2
Arc Welding	Y-316×BF-300F	☆Z 3324 YWS316	☆A5.9 ER316	2
Materials	Y-316L×BF-300M	☆Z 3324 YWS316L	☆A5.9 ER316L	2
140011415	Y-316L×BF-300F	☆Z 3324 YWS316L	☆A5.9 ER316L	2
	Y-347×BF-300M	☆Z 3324 YWS347	☆A5.9 ER347	2
	Y-170×BF-300M		-	2
	Y-DP8×BF-30		-	2
	Y-DP3×BF-30		-	2
	Y-410×BF-300M	☆Z 3324 YWS410	☆A5.9 ER410	2

Walding madel	Brand Name	Spec	ification	D
Welding method	Brand Name	JIS	AWS	Pa
	YM-308	☆Z 3321 YS308	☆A5.9 ER308	22
	YM-309	☆Z 3321 YS309	☆A5.9 ER309	22
	YM-316	☆Z 3321 YS316	☆A5.9 ER316	22
	YM-308L	☆Z 3321 YS308L	☆A5.9 ER308	22
	YM-308LSi	☆Z 3321 YS308LSi	☆A5.9 ER308LSi	22
	YM-308UL	☆Z 3321 YS308L	☆A5.9 ER308L	22
	YM-309L	☆Z 3321 YS309L	☆A5.9 ER309L	22
	YM-309LSi	☆Z 3321 YS309LSi	☆A5.9 ER309LSi	22
	YM-309Mo	☆Z 3321 YS309Mo	☆A5.9 ER309Mo	22
Gas Metal Arc	YM-309MoL	☆Z 3321 YS309LMo	☆A5.9 ER309LMo	22
Jas Metal Arc Welding Wires	YM-310	☆Z 3321 YS310	☆A5.9 ER310	22
weiding wires	YM-316L	☆Z 3321 YS316L	☆A5.9 ER316L	22
	YM-316LSi	☆Z 3321 YS316LSi	☆A5.9 ER316LSi	22
	YM-316UL	☆Z 3321 YS316L	☆A5.9 ER316L	25
	YM-317L	☆Z 3321 YS317L	☆A5.9 ER317L	22
	YM-347	☆Z 3321 YS347	☆A5.9 ER347	22
	YM-347L	☆Z 3321 YS347L	☆A5.9 ER347	22
	YM-190	_	_	22
	YM-410	☆Z 3321 YS410	☆A5.9 ER410	25
	YM-430L	☆Z 3321 YS430	☆A5.9 ER430	25
	YM-160	☆Z 3321 YS430LNb	_	22
	YT-308	☆Z 3321 YS308	☆A5.9 ER308	23
	YT-308L	☆Z 3321 YS308L	☆A5.9 ER308L	25
	YT-308UL	☆Z 3321 YS308L	☆A5.9 ER308L	23
	YT-309	☆Z 3321 YS309	☆A5.9 ER309	23
	YT-309L	☆Z 3321 YS309L	☆A5.9 ER309L	25
	YT-309Mo	☆Z 3321 YS309Mo	☆A5.9 ER309Mo	23
	YT-309MoL	☆Z 3321 YS309LMo	☆A5.9 ER309LMo	23
	YT-310	☆Z 3321 YS310S	☆A5.9 ER310S	2
	YT-316	☆Z 3321 YS316	☆A5.9 ER316	23
	YT-316L	☆Z 3321 YS316L	☆A5.9 ER316L	2
Gas Tungsten	YT-316UL	☆Z 3321 YS316L	☆A5.9 ER316L	2
Arc Welding	YT-317L	☆Z 3321 YS317L	☆A5.9 ER317L	2
Wires	YT-320	_	☆A5.9 ER320LR	2
	YT-347	☆Z 3321 YS347	☆A5.9 ER347	23
	YT-347AP	_	_	2
	YT-DP8	☆Z 3321 YS2209	☆A5.9 ER2209	2
	YT-DP3	_	_	23
	YT-DP3W	_	_	23
	YT-410	☆Z 3321 YS410	☆A5.9 ER410	23
	YT-430	☆Z 3321 YS430	☆A5.9 ER430	23
	YT-430L	☆Z 3321 YS430L	☆A5.9 ER430	23
	YT-190	_	_	23
	YT-444			23

10) Special Alloy

Welding method	D. IN	Specification		
weiung methou	Brand Name	JIS	AWS	Page
	YAWATA WELD B(M)	☆Z 3225 D9Ni-1	☆A5.11 ENiCrFe-4	238
a 1	NI9	_	☆A5.11 ENiCrMo-6	240
Covered	NITTETSU WELD 196	☆Z 3225 D9Ni-2	☆A5.11 ENiMo-9	239
Arc Welding Electrodes	YAWATA WELD B	☆Z 3224 E Ni 6133	☆A5.11 ENiCrFe-2	242
Electrodes	YAWATA WELD 182 AC	☆Z 3224 E Ni 6182	☆A5.11 ENiCrFe-3	242
	NITTETSU WELD 112 AC	☆Z 3224 E Ni 6625	☆A5.11 ENiCrMo-3	242
Submerged Arc Welding Materials	NITTETSU FLUX 10H× NITTETSU FILLER 196	☆Z 3333 FS9Ni-H YS9Ni	★A5.14 ERNiMo-9	244
	BF-276×Y-276		☆A5.14 ERNiCrMo ⁻ 4	245
	YT-NIC	☆Z 3334 SNi2061	☆A5.14 ERNi-1	246
	YAWATA FILLER 82	☆Z 3334 SNi6082	☆A5.14 ERNiCr-3	246
a	NITTETSU FILLER 196	☆Z 3332 YG-T9Ni-2	☆A5.14 ERNiMo-9	246
Gas Tungsten	YT-NC718	☆Z 3334 SNi7718	☆A5.14 ERNiFeCr-2	246
Arc Welding Wires	NITTETSU FILLER 625	☆Z 3334 SNi6625	☆A5.14 ERNiCrMo-3	246
wires	YT-HSTC2	☆Z 3334 SNi6276	☆A5.14 ERNiCrMo ⁻ 4	246
	YT-NC622	☆Z 3334 SNi6622	☆A5.14 ERNiCrMo-10	246
	YT-NC617	☆Z 3334 SNi 6617	☆A5.14 ERNiCrCoMo-1	246

YAWATA is a registered trademark or trademark of NIPPON STEEL CORPORATION, and our company is licensed. NITTETSU is a registered trademark or trademark of NIPPON STEEL CORPORATION, and our company is licensed.

11) Surfacing Cast Iron

M7.11	Brand Name	Specification		
Welding method	Brand Name	JIS	AWS	-Page
	H-250B	☆Z 3251 DF2A-250-R	_	250
	H-250C	☆Z 3251 DF2A-250-B	_	250
	H-300C	☆Z 3251 DF2A-300-B	-	250
	H-350C	☆Z 3251 DF2A-350-B	_	250
	H-500	☆Z 3251 DF2B-500-B	_	250
	H-600	☆Z 3251 DF2B-600-B	-	252
Covered Arc Welding	H-700	☆Z 3251 DF2B-700-B	-	252
	H-750	☆Z 3251 DF3C-700-B	_	252
	H-800	☆Z 3251 DF3C-700-B	-	252
	H-13Cr	☆Z 3251 DF4B-350-B	-	252
Electrodes	H-13M	☆Z 3251 DFMA-250-B	_	254
	H-13MN	☆Z 3251 DFMA-250-B	-	254
	H-13CrM	_	-	254
	H-MCr	☆Z 3251 DFME-250-B	_	254
	H-11Cr	☆Z 3251 DF4A-500-B	_	254
	H-30Cr	☆Z 3251 DFCrA-700-BR	-	256
	H-30CrM	☆Z 3251 DFCrA-700-BR	_	256
	C-1N	☆Z 3252 ECNi-CI	★A5.15 ENi-CI	258
	C-5N	☆Z 3252 ECNiFe-CI	☆A5.15 ENiFe-CI	258
Flux Cored Arc	FCM-132M	☆Z 3326 YF4A-G-400	_	260
Welding Wires	FCM-134	☆Z 3326 YF4A-G-400	_	260
weiding wires	FCM-134M	☆Z 3326 YF4A-G-400	_	260

12) Electroslag Welding Materials

Welding method	Brand Name	Specification		
		JIS	AWS	Page
Electroslag Welding Materials	YM-55S×YF-15I	☆Z 3353 YES501-S/FES-Z	_	262
	YM-55HF×YF-15I	☆Z 3353 YES562-S/FES-Z	_	264
	YM-60E×YF-15I	☆Z 3353 YES602-S/FES-Z	_	262

13) Electrogas Welding Materials

Welding method	Brand Name -	Specification		
		JIS	AWS	Page
Electrogas	EG-1	☆Z 3319 YFEG-21C	_	266
Welding	EG-3	_	☆A5.26 EG72T-G	266
Materials	EG-60	☆Z 3319 YFEG-32C		266

14) High Efficiency Welding Process

Welding method	Application	Page
NARROW GAP SUBMERGED ARC PROCESS	High Quality and Low Cost Welding Process for Heavy Steel Plates	270
CUT WIRE SUBMERGED ARC WELDING PROCESS	High Efficiency Submerged Arc Welding Process	272
ONE-SIDE WELDING PROCESS	One-Side Welding Process to Shorten Welding Time Using Various Kind of Backing Materials and Flux	274
SB-41	Backing Material for Gas Shield Arc One-side Welding	276
SOFT BACKING SUBMERGED ARC WELDING PROCESS	One-side welding where backing jigs cannot be used like welding of curved plates in shipbuilding and site welding of bridges.	
FLUX COPPER BACKING SUBMERGED ARC WELDING PROCESS	Welding of large plates for ships, bridges and structures.	280

15) Welding Machine and Equipment

Machine and Equipment	Brand Name	Application	Page
Simplified Travelling Carriage with Various Models	_	Fillet Welding	284
High Efficiency Electroslag Welding Machine	_	Vertical Butt Joint on Electroslag Welding	286
Electrogas Arc Welding Machine	-	Vertical Butt welding	286
Two Electrode Electrogas Arc Welding Machine	_	High-efficiency vertical automatic welding machine	288
High Heat Input Submerged Arc Welding Equipment	_	Welding of Box column corner joints	290
Diaphragm Welding Equipment	—	Welding of Box column diaphragms	291
PANEL LINE PRODUCTION FACILITY	_	Production line of parallel block used in shipbuilding.	292
Multi-electrode Automatic Welding Equipment	_	Horizontal Fillet Welding of longitudinals and stiffeners	295
One-Side SAW Welding Equipment	_	Joining of large steel plates	296
FULL DIGITAL PLASMA WELDING MACHINE	NW-150AH-III NW-350AH-III	Welding of various metals	300

Machine and Equipment	Brand Name	Application	Page
TWO ELECTRODES PLASMA ARC WELDING MACHINE	—	W-PLASMA Welding Welding of various metals	304
PLASMA WELDING MACHINE FOR GALVANIZED STEEL SHEET	_	DS PLASMA Welding Galvanized steel sheet	305
PLASMA TRANSFERRED ARC (PTA) WELDING Equipment	—	Surfacing welding	306
Circumferential Fillet Welding Equipment	_	Welding of automotive parts, etc	309
Pipe Overlap Fillet Welding Equipment	_	Welding of electromagnetic valves,sensor parts,etc	308
Flat Plate Butt Welding Equipment	_	Butt welding of flat plates	309
Simplified Plasma Seam Welding System	_	Seam Welding of flat plates and pipes	310
Clamp Seam Welding System (6.2m type)	_	Welding of box corner sections	312

16) Packaging

	Page
Spool size / Drum size / Coil size	314
PALEETIZED PACKAGING	316

17) Approval List of Welding Materials

Category	Page
1. Covered Arc Welding Materials -SMAW-	326
2. Gas Shielded Arc Welding Materials	330
1) Gas Metal Arc Welding Wires Wires -GMAW-	330
2) Flux Cored Arc Welding Wires -FCAW-	332
3) Gas Tungsten Arc Welding Rods and Wires -GTAW-	336
4) Electrogas Arc Welding Materials -EGW-	336
5) One-Side Gas Shielded Arc Welding Materials	338
3. Submerged Arc Welding Materials -SAW-	340
1) Multi-layer Welding and Both Side Welding	340
2) One-Side Submerge Arc Welding Materials	342

Warning for Safety in Welding

·Be sure to follow the safety practices stated in the following when you use welding consumables.

•Be sure to follow the safety practices stated in the instruction manual when you use welding equipment.

 $\cdot\,\text{Do}$ not touch live electrical parts. (A covered electrode held with an electrode holder and a wire in welding are electrically live.)

·Wear dry, insulated gloves. Do not wear teared and wet gloves.

Use an electric shock prevenling device (open-circuil-voltage-reducing device) when welders or operalors work in confined or high-level paces. Use also a lileline when a welder or operator conducts welding at a highlevel spaces.

• Follow the safety practice stated in the instruction manual of the welding machine before you use. Do not use a welding machine case or cover of which is removed. welding cables must be of a size adequale for the capacity expected. Welding cables must be maintained, and a damaged cable must be repaired or replaced new.

Fumes and gases generated in welding. can be dangerous to your health.
Welding in conlined spaces can be danger-

ous to suffocation because of oxygen deficient atmospheres.

•Keep your head out of the source of fumes or gases to prevent you from directly breathing high density fumes or gases.

- \cdot Use local exhaust ventilation, or wear respirators in order to prevent you from breathing fumes and toxic gases
- •Use general ventilation for welding in the workshop. Particularly in welding in confined spaces, be sure to use adequate ventilation, or wear respirators in the presence of a trained supervisor.
- •Do not weld where operations of degreasing, cleaning, spraying, and painting are present nearby. Welding work close to these operations may cause a generation of harmful gases.
- \cdot Use adequate ventilation or respirators with special attention in welding plated and coated steel.
- \cdot Use respirators, eye safety glasses and safety leather gloves when handling welding fluxes in order to prevent you from the flux dust.

• Arc rays can injure eyes and burn skin.

•Wear hand shields with an adequate grade of shade in welding and in supervising the welding work. Select the correct grade of shade for filter lenses and filter plates suitable for exact welding work by referring to the standard of JIS T8141.

- •Wear protectors suitable for preventing you from the arc rays such as safety leather gloves for welding, long sleeve shirts, foot covers, leather aprons, etc.
- · Use, at need, shade curtains for welding by surrounding the welding areas in order to prevent accompanied workers from the arc rays.

· Fire and explosion can take place.

- •Never weld at areas adjacent to highly inflammable materials. Remove combustibles so that spatter cannot ignite them. If combustibles cannot be removed, cover them with a noninflammable material.
- $\cdot \operatorname{Do}$ not weld a vessel or pipe which contains combustibles or being sealed.
- $\cdot \operatorname{Do}$ not put a hot weldment close to combustibles right after welding finished.
- $\cdot \ensuremath{\mathsf{When}}$ welding cellings, floors, walls, etc. remove combustibles at the other side of them.
- •Any part of welding wire, with exception of wire extended at the tip of the torch, must be free from touching on the electrical circuit of the base metal side.

Fasten the cable joints and seal them in a insulation tape. The cable for the base metal side should be connected closer to the part of welding.
Be ready to cope with a possible accident by equipping fire-extingushing equipment adjacent to the welding areas.

- · Flying spatters and slags can injure eyes and cause skin burns.
- ·High temperature heat in welding can cause skin burns.

Wear safety glasses, safety leather gloves for welding, long sleeve shirts, foot covers, leather aprons, etc.
Do not touch weldments while hot.

•The tips of the welding wires and filler wires can injure eyes, faces, etc.

- $\cdot \operatorname{Do}$ not loose your hold on the tip of the wire when take off the tip of the wire.
- Do not direct the welding torch to your face when check the wire feeding condition.

- •Falling down and dropping welding consumables can injure you.
- •Wear safety shoes, and pay your attention not to drop welding consumables on your body when you carry and handle them. Keep your posture correct not to cause a crick in your back while handling them.
- •Follow the handling instructions shown on the surface of the pail pack wire packages when handle them.
- Pile up welding consumables so that falling down and dropping cannot take palce while being stored and carried.

Mild Steel·490~550MPa High Tensile Strength Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires FCAW

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, chemical engineering apparatus, rolling stock and cans.

CHARACTERISTICS

SF-1 is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and bead is smooth with good shape and appearance since easily removable slag covers bead evenly. The diffusible hydrogen content is as low as that of solid wires since the wire has no seam and, consequently, weld metal shows excellent crack resistance. Welding fume is also less. It assures high welding efficiency since deposition rate is high and all-position welding is easily performed with almost the same current.

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. Distance between base metal and tip should be kept within 20~30mm.
- 4. Arc voltage should be 1 or 2 volt lower than that for conventional flux cored wires and 4 or 5 volt lower than that for solid wires.
- 5. SB-41, backing material, is recommended for one side welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.06	0.50	1.40	0.015	0.010

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
520	580	28	91

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter	r (mm)	1.0	1.2	1.4	1.6
	F	$150 \sim 260$	$180 \sim 320$	200~410	$220 \sim 450$
	H-Fil	$150 \sim 260$	$180 \sim 320$	200~410	$220 \sim 450$
Current	Н	$150 \sim 240$	180~300	$200 \sim 350$	220~400
А	V-up	$150 \sim 200$	$180 \sim 260$	$180 \sim 260$	200~280
	V-down	$160 \sim 220$	200~280	220~300	_
	OH	$150 \sim 240$	180~260	180~260	—

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, rolling stock and parts which especially requires toughness.

CHARACTERISTICS

 $\rm SF\textsc{-}1E$ is a rutile type seamless flux cored arc welding wire to be used with $\rm CO_2$ shield gas.

It assures excellent usability with minimized spattering and beautiful bead appearance with satisfactory impact toughness in all position welding.

GUIDELINES FOR USAGE

- 1. If gas shild is insufficient, nitrogen in the air will be absorbed into weld metal causing deterioration of toughness. Distance between nozzle and base metal should be kept within 20mm.
- 2. Select optimum welding conditions, heat input for example, in accordance with plate thickness, welding position, etc.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni
$\rm CO_2$	0.06	0.50	1.29	0.014	0.005	0.30

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J
590	610	28	93

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter	· (mm)	1.2	1.4
	F	180~300	200~410
C I	H-Fil	180~300	200~410
Current A	Н	180~300	200~350
Л	V-up	180~260	180~260
	OH	180~260	180~260

ELDREAM

WELDREAM

FCAW

FCAW

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, chemical engineering apparatus, rolling stock and cans.

CHARACTERISTICS

FC-1 is a rutile type flux cored arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and bead is smooth with good shape and appearance since easily removable slag covers bead evenly. Welding fume is also less. It assures high welding efficiency since deposition rate is high and all-position welding is easily performed with almost the same current.

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
- 2. A suitable shield gas flow rate is $20\sim 25\ell/min$.
- 3. Distance between base metal and tip should be kept within 20~30mm.
- 4. SB-41 series, backing material, is recommended for one side welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.04	0.53	1.45	0.016	0.008

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
510	570	27	100

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter	· (mm)	1.0	1.2	1.4	1.6	2.0
	F	$90 \sim 250$	$120 \sim 300$	$150 \sim 400$	$200 \sim 450$	$300 \sim 500$
	H-Fil	$90 \sim 250$	$120 \sim 300$	$150 \sim 350$	200~400	$300 \sim 450$
Current	Н	$90 \sim 230$	$120 \sim 280$	$150 \sim 320$	$180 \sim 350$	
А	V-up	$90 \sim 230$	$120 \sim 260$	$150 \sim 270$	$180 \sim 280$	—
	V-down	$120 \sim 250$	$160 \sim 300$	$220 \sim 300$	$250 \sim 300$	
	OH	$90 \sim 230$	$120 \sim 260$	$150 \sim 270$	$180 \sim 280$	_

SF-3M

*AWS A5.20 E71T-9C-JH4

For Low-Alloy Steel

APPLICATIONS

All position welding down to -40°C, 100%CO₂ shielding gas

CHARACTERISTICS

SF-3M is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas and designed for shipbuilding and offshore structure welding. Weld metal shows excellent toughness in low temperature range down to -40°C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni			
0.05	0.42	1.30	0.013	0.004	0.44			

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -40°C, J
545	595	28	115

TYPICAL WELD JOINT TEST

Base metal	Plate thickness mm	Welding position	Heat input kJ/cm	Yield strength MPa	Tensile strength MPa	Charpy 2V-notch at -40°C, J	CTOD mm,at −10°C
YS360	50	Vertical-up	22	590	655	110	0.72

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
Current A	F, H	180~300	200~400
	H-Fil	180~300	200~400
	V-up, OH	180~260	180~260

ELDREA

FCAW

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, rolling stock and parts which especially requires toughness.

CHARACTERISTICS

SF-3 is a rutile type seamless flux cored arc welding wire to be used with CO₂ shield gas and designed for welding shipbuilding grade E steel. Weld metal shows excellent toughness in low temperature range of $-20 \sim$ -30°C. Crack resistance and weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. If gas shield is insufficient, nitrogen in the air will be absorbed into weld metal causing deterioration of toughness. Distance between nozzle and base metal should be kept within 20mm.
- 2. Select optimum welding conditions, heat input for example, in accordance with plate thickness, welding position, etc.
- 3. SB-41, backing material, is recommended for one side welding.
- 4. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni
CO_2	0.05	0.42	1.30	0.013	0.004	0.44

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J		
MPa	мга	70	-30°C	−20°C	
545	600	27	105	130	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

· (mm)	1.2	1.4
F	180~300	200~410
H-Fil	180~300	200~410
Η	180~300	200~350
V-up	180~260	180~260
OH	180~260	180~260
	F H-Fil H V-up	F 180~300 H-Fil 180~300 H 180~300 V-up 180~260

SF-1A

JIS Z 3313 T49J0T1-1MA-UH5 *AWS A5.20 E71T-1M-H4

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, chemical engineering apparatus, rolling stock and cans,

CHARACTERISTICS

SF-1A is a rutile type seamless flux cored arc welding wire to be used with Ar+CO₂ shield gas. Arc is stable, spatters are few and bead is smooth with good shape and appearance since easily removable slag covers bead evenly. The diffusible hydrogen content is as low as that of solid wires since the wire has no seam and, consequently, weld metal shows excellent crack resistance. Welding fume is also less. It assures high welding efficiency since deposition rate is high and all-position welding is easily performed with almost the same current.

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. Distance between base metal and tip should be kept within 20~30mm.
- 4. Arc voltage should be 1 or 2 volt lower than that for conventional flux cored wires and 4 or 5 volt lower than that for solid wires.
- 5. SB-41, backing material, is recommended for one side welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
Ar+20% CO_2	0.05	0.52	1.22	0.013	0.008

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J
530	575	25	60

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (r	nm)	1.2	1.4	1.6
	F	180~320	200~430	$220 \sim 450$
C I	H-Fil	180~320	200~430	$220 \sim 450$
Current A	Н	180~300	200~350	220~400
А	V-up	$180 \sim 260$	180~260	200~280
	OH	180~300	180~260	—

WELDREAM

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

FCAW

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, ships, bridges, towers, rolling stock and parts which especially requires toughness.

CHARACTERISTICS

SF-3A is a rutile type seamless flux cored arc welding wire to be used with Ar+CO₂ shield gas and designed for welding shipbuilding grade E steel. Weld metal shows excellent toughness in low temperature range of $-20 \sim -40^{\circ}$ C. Crack resistance and weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. If gas shield is insufficient, nitrogen in the air will be absorbed into weld metal causing deterioration of toughness. Distance between nozzle and base metal should be kept within 20mm.
- 2. Select optimum welding conditions, heat input for example, in accordance with plate thickness, welding position, etc.
- 3. SB-41, backing material, is recommended for one side welding.
- 4. For others, see GUIDELINES FOR USAGE 1~4 of SF-1 (Page 3-2).

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni
Ar+20% CO_2	0.05	0.46	1.48	0.014	0.005	0.33

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J -40°C
600	620	25	87

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter	· (mm)	1.2	1.4
	F	180~300	200~410
a	H-Fil	180~300	200~410
Current H	Н	180~300	200~350
Л	V-up	180~260	180~260
	OH	180~260	180~260

SM-1

JIS Z 3313 T49J0T15-0CA-G-UH5 *AWS A5.18 E70C-GC

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for machinery, structures, steel frames, bridges, ships and rolling stock.

CHARACTERISTICS

SM-1 is seamless flux cored arc welding wire filled mainly with metallic powder and is used with CO_2 shield gas. Arc is softer and fume is less than CO_2 solid wires and high welding speed is obtainable. Continuous multi-layer welding like solid wires is possible due to the small amount of slag. The wire is fed straight and easily since it has no seam and, therefore, is suitable for high current and high efficiency automatic welding including robots.

GUIDELINES FOR USAGE

- 1. A high capacity welding power source of more than 600A is required for big diameter wire (2.0mm).
- 2. Recommended distance between tip and base metal is 20~30mm for 1.6mm diameter and 25~35mm for 2.0mm diameter.

WELDING POSITION

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.05	0.72	1.28	0.015	0.006

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
460	560	30	70

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4	1.6	2.0
Current (A)	(A) F	200~320	$220 \sim 450$	$250 \sim 550$	$350 \sim 650$
	H-Fil	200~320	220~400	$250 \sim 450$	350~500

VELDREAM

SM-1F

JIS Z 3313 T49J0T1-0CA-UH5 *AWS A5.20 E70T-1C-H4

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

FCAW

Flat and horizontal welding of mild steel and 490MPa high tensile strength steel for ships, bridges and steel frames.

CHARACTERISTICS

SM-1F is a rutile type seamless flux cored arc welding wire filled mainly with metallic powder to be used with $\rm CO_2$ shield gas. Weld metal shows excellent resistance to pitting in the welding of steel plates coated with inorganic zinc primer.

GUIDELINES FOR USAGE

- 1. Suitable torch angle for horizontal fillet welding is $40 \sim 50^{\circ}$ from bottom plate and forehand angle is $5 \sim 30^{\circ}$.
- 2. Care should be given to the primer thickness.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1 (Page 3-2).

WELDING POSITION

JIS Z 3313 T49J0T1-0CA-U *AWS A5.20 E70T-1C

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Flat and horizontal welding of mild steel and 490MPa high tensile strength steel for ships, bridges and steel frames.

CHARACTERISTICS

FCM-1F is a rutile type flux cored arc welding wire filled mainly with metallic powder to be used with CO_2 shield gas. Weld metal shows excellent resistance to pitting in the welding of steel plates coated with inorganic zinc primer. Bead shape of fillet welding is also good.

GUIDELINES FOR USAGE

- 1. Suitable torch angle for horizontal fillet welding is $40{\sim}50^{\circ}$ from bottom plate and forehand angle is $5{\sim}30^{\circ}$.
- 2. Care should be given to the primer thickness.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1 (Page 3-2).

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.05	0.53	1.50	0.016	0.011

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J	
			−20°C	0°C
510	585	26	62	85

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2 1.4		1.6	
Current	F	$180 \sim 320$	200~400	$220 \sim 450$	
А	H-Fil	180~320	$200 \sim 350$	$220 \sim 450$	

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.04	0.55	1.50	0.015	0.010

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
510	570	27	90

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4	1.6	
Current	F-Fil	$180 \sim 320$	200~400	$220 \sim 450$	
Α	H-Fil	180~320	200~350	220~420	

FCAW

ELDREAM

WELDREAM

*AWS A5.18 E70C-GM-H4

For Low-Alloy Steel

APPLICATIONS

FCAW

Seamless flux cored wire for Ar-CO₂ gas shielded arc welding of low temperature service steel for offshore structures, etc.

CHARACTERISTICS

SM-3A is a seamless metal type flux cored arc welding wire to be used with Ar-20% CO_2 shielding gas. It has been designed of root pass in all position in the short-circuit arc range, and flat position, horizontal position and fillet welds in the spray arc range.

It assures excellent impact toughness at low temperature down to-40°C.

It has also good usability with high efficiency, less spattering and beautiful bead appearance.

Moreover, due to its seamless surface, it provides various advantages better than conventional open-seam flux cored wires.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with plate thickness and required toughness.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
$Ar+20\%CO_2$	0.05	0.66	1.69	0.008	0.013

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J -40°C
540	600	29	72

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	1.4
Current	F	$200 \sim 350$	$250 \sim 400$
А	H-Fil	$200 \sim 350$	$250 \sim 400$

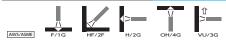
SF-3E

*AWS A5.29 E81T1-GC-H4

For Low-Alloy Steel

APPLICATIONS

All position welding for YS420 down to -40°C, 100%CO₂ shielding gas


CHARACTERISTICS

SF-3E is a rutile type seamless flux cored arc welding wire to be used with CO₂ shield gas and designed for shipbuilding and offshore structure welding. Weld metal shows excellent toughness in low temperature range down to -40 °C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni
0.05	0.42	1.30	0.013	0.004	0.44

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -40°C, J
540	590	28	115

TYPICAL WELD JOINT TEST

Base metal	Plate thickness mm	Welding position	Heat input kJ/cm	Yield strength MPa	Tensile strength MPa	Charpy 2V-notch at -40°C, J	CTOD mm,at -10°C
YS360	50	Vertical-up	22	590	650	105	0.72

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
Current A	F, H	180~300	200~400
	H-Fil	180~300	200~400
	V-up, OH	180~260	$180 \sim 260$

ELDREAM

APPLICATIONS

FCAW

Welding of mild steel and 490MPa high tensile strength steel for automobiles, rolling stock, machinery, air conditioners, tools light gauge steel, steel frames, bridges and ships,

CHARACTERISTICS

SX-26 is seamless flux cored arc welding wire filled mainly with metallic powder and is used with CO₂ shield gas. Arc is softer and fume is less and weld metal in holizontal position (2G) is bringed better than solid wires with CO₂. And penetration is gave as depth as solid wires with CO₂. Continuous multi-layer welding like solid wires is possible due to the small amount of slag.

The wire is fed straight and easily since it has no seam and, therefore, is suitable for high current and high efficiency automatic welding including robots.

GUIDELINES FOR USAGE

1. It should be been that distance between tip and base metal is $20 \sim 30$ mm for 1.2mm diameter and 20~35mm for 1.4mm or more diameter.

2. It should be been that flow rate of sheilding gas is $20 \sim 25 \text{L/min}$.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

				. /	
С	Si	Mn	Р	S	Ti
0.07	0.60	1.30	0.014	0.011	0.03

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength	Tensile Strength,	Elongation,	Charpy 2V-notch J
MPa	MPa	%	0°C
532	620	25	84

TYPICAL WELD JOINT TEST

Heat input kJ/cm	Inton	Joint Tensile Test		Charpy	Wire		
	Inter- pass temp. °C	Tensile Strength MPa	Location of Fracture	2V-notch J 0°C		Base metal	Groove geometry
30	≤ 250	539	Base tetal	93	1.4	SN490B 20mm	35° single bevel groove R.G: 8mm

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
Current	F	200~380	$220 \sim 450$
range	Н	200~380	220~380
Α	H-Fil	200~320	220~400

SX-55

JIS Z 3313 T550T15-0CA-UH5 *A5.28 E80C-G H4

For Mild Steel and 490 to 550MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490 to 550MPa high tensile strength steel for construction of steel structural.

CHARACTERISTICS

SX-55 is seamless flux cored arc welding wire filled mainly with metallic powder and is used with CO_2 shield gas. Arc is softer and fume is less and weld metal in holizontal position (2G) is bringed better than solid wires with CO2. And penetration is gave as depth as solid wires with CO2. Continuous multi-layer welding like solid wires is possible due to the small amount of slag.

The wire is fed straight and easily since it has no seam and, therefore, is suitable for high current and high efficiency automatic welding including robots.

In case of welding for 490MPa high tensile strength steel, it can be applyed a administrative limited welding conditions (H/I: 40kJ/cm-I-P/Temp.: 350°C) on JASS6 of Arcitectual institute of Japan.

GUIDELINES FOR USAGE

- 1. It should be been that distance between tip and base metal is $20 \sim 30$ mm for 1.2mm diameter and 20~35mm for 1.4mm or more diameter.
- 2. It should be been that flow rate of sheilding gas is 20~25L/min.
- 3. In the welding for 520MPa steel, it can be applyed $H/I \leq 40 \text{kJ/cm}$ and $I \cdot P/\text{Temp.} \leq 350^{\circ}\text{C}$.
- 4. In the welding for 550MPa steel, it should be asked welding conditions to steel supliers.

WELDING POSITION

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Mo
0.07	0.60	1.30	0.013	0.012	0.20

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength	Tensile Strength,	Elongation,	Charpy 2V-notch J
MPa	MPa	%	0°C
570	639	25	121

TYPICAL WELD JOINT TEST

	Heat	Inter-	Joint Tensile Test		Charpy	Wire		
	input kJ/cm	pass temp. °C	Tensile Strength MPa	Location of Fracture	2V-notch J 0°C		Base metal	Groove geometry
-	40	≤ 350	544	Base tetal	106	1.4	SN490B 20mm	35° single bevel groove R.G: 8mm

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
Current	F	200~380	$220 \sim 450$
range	Н	200~380	220~380
Α	H-Fil	200~320	220~400

ELDREAM

Flux Cored Arc Welding Wires for Mild Steel and 490~550MPa High Tensile Strength Steel

Brand Name	Shield	Specification		Dia.	Application and Characteristics
	Gas	JIS	AWS	mm	Application and Unaracteristics
SM-1S	CO_2	Z 3313 T49J0T1- 0CA-UH5	☆ A5.20 E70T-1C-H4	$1.2 \\ 1.4 \\ 1.6$	Less slag quantity type seamless flux cored wire filled mainly with metallic powder. Arc is more stable than CO_z solid wires, spatters are few and bead shape is excellent in flat butt and horizontal fillet welding.
	Welding Position	AWS/ASME F	/1G HF/2F		

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

ŋ	Typical Chemical Composition of Weld Metal (%)			Typical Mechanical Properties of Weld Metal				Туре	
С	Si	Mn	Р	s	Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V- notch at 0°C, J	of Current
0.05	0.52	1.56	0.015	0.009	510	590	28	98	DC (+)

1

• 34

FCAW

1

• 35 SMAW

ELDREAM

For Mild Steel

APPLICATIONS

Welding of mild steel sheets for ships, rolling stock and structures. Applicable to welding of vertical downward and finishing of heavy structural works.

CHARACTERISTICS

FT-51 is a high titania potassium type electrode for all positions and assures easy operation even in vertical downward position. Spatters are less and bead appearance is beautiful. Welding distortion is low on a thin steel sheet, because penetration is shallow.

GUIDELINES FOR USAGE

- 1. If coating flux absorbs excessive moisture, arc and slag fluidity become unstable and spatters increase. And undercuts and blowholes are apt to occur. Damp electrodes should be redried at 70~120°C for 60 minutes.
- 2. In inclined and vertical downward positions, touch electrode tip lightly to the base metal and deposit a stringer bead with electrode slope 40~80°C.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.08	0.33	0.42	0.014	0.013

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
460	510	25	60

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		2.0	2.6	3.2	4.0	5.0	6.0
Length (mm)		250	350	350	400	400	400
C I	F	30~70	50~100	60~130	110~170	$150 \sim 220$	200~280
Current	VD	30~70	50~100	60~130	110~170	$150 \sim 220$	_
А	VU, OH	30~70	50~100	60~130	$100 \sim 150$	130~190	—

NITTETSU™-16W

JIS Z 3211 E4316 AWS A5.1 E7016

For uranami welding in all positions

APPLICATIONS

Uranami (sound penetration bead) welding of mild steel pipes for ships, pressure vessels and pipelines.

CHARACTERISTICS

NITTETSU-16W is a low hydrogen type electrode for uranami welding in all positions. In low currentrange in root pass welding of pipes, a sound penetration bead without blowholes is obtained due to stable arc, strong arc force. And excellent slag fluidity and coverage.

GUIDELINES FOR USAGE

- 1. DC(-) should be used for uranami welding. However AC or DC(+) have to be used on AWS.
- 2. 3.2mm diameter electrode is recommended for all position welding of pipes with 6-15mm wallthickness.
- 3. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 4. Arc should be started on a small plate or the side of the groove and cut after moving crater to the side of the groove
- 5. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.07	0.58	1.17	0.012	0.004

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch J		
MPa	MPa	70	at -20°C	at -40°C	
465	570	32	96	77	

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)><AWS: AC or DC(+)>

Diameter (n	nm)	2.6	3.2	4.0
Length (mm)		350	400	400
	F	50~100	70~130	120~180
Current A	OH	40~80	60~130	100~160
	VU	40~80	60~130	100~160
	Uranami welding	40~80	60~110	80~140

Identification color: End-red, secondary-red

SMAW

ELDREAM

JIS Z 3211 E4916-U *AWS A5.1 E7016

For 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of 490MPa high tensile strength steel for ships, structures, bridges and pressure vessels.

CHARACTERISTICS

L-55 is a low hydrogen type electrode for all positions. Weld metal shows excellent crack resistance, mechanical properties and X-ray quality. Vertical and overhead welding is very easy.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pits at arc starting and arc length should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

L-55LH

JIS Z 3211 E4916-U *AWS A5.1 E7016

For 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of 490MPa High Tensile Strength Steel for ships, structures, bridges and pressure vessels.

CHARACTERISTICS

L-55LH is a low hydrogen type electrode for all positions. Diffusible hydrogen in the weld metal 100 grams is 5mL below. Therefore the weld metal shows excellent crack resistance and X-ray quality. Weldability and mechanical properties are good due to arc stable. And vertical and overhead welding is very easy.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pits at arc starting. Arc length should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.07	0.62	1.18	0.011	0.008

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -30°C, J
480	550	30	160

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	(mm)	2.6	3.2	4.0	5.0	6.0	8.0
Length (r	mm)	300	400	450	450	450	450
Current A	F, H-Fil, H	60~110	70~140	120~190	190~240	250~300	340~390
	V-up,OH	60~90	60~130	90~150	130~170	_	_

Identification color: End-light green, secondary-yellow

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.07	0.61	1.12	0.014	0.001

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -30°C, J
466	577	28	141

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	r (mm)	2.6	3.2	4.0	5.0	6.0	8.0
Length (1	nm)	300	400	450	450	450	450
Current	F, HF, H	60~110	70~140	$120 \sim 190$	190~240	$250 \sim 300$	340~390
А	VU, OH	60~90	60~130	$90 \sim 150$	130~170	_	_

Identification color: End-light blue, secondary-pink

SMAW

JIS Z 3211 E4916 *AWS A5.1 E7018

For 490MPa high tensile strength steel

APPLICATIONS

Welding of 490MPa high tensile strength steel for ships, steel frames, bridges and pressure vessels.

CHARACTERISTICS

7018 is an Iron powder low hydrogen type electrode containing a large amount of iron powder in coating flux. Deposited metal gives excellent mechanical properties, crack resistance and X-ray quality. Weldability is good and high welding efficiency is obtained.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pits at arc starting and arc length should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

SMAW

For 490MPa high tensile strength steel

APPLICATIONS

Welding of 490MPa high tensile strength steel of down to -45°C for steel frames, bridges and pressure vessels.

CHARACTERISTICS

7018-1 is a low hydrogen iron powder type electrode containing a large amount of iron powder in coating flux. Deposited metal gives excellent mechanical properties, crack resistance and X-ray quality. Weldability is good and high welding efficiency is obtained.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before using.
- 2. Backstep method should be applied to prevent blowholes and pits at arc starting and arclength should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

40

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.08	0.57	0.92	0.013	0.010

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -30°C, J
460	530	31	110

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	r (mm)	2.6	3.2	4.0	5.0	6.0
Length (1	mm)	350	350	400	400	450
Current	F	70~100	100~140	$150 \sim 200$	$190 \sim 240$	$250 \sim 310$
А	VU, OH	60~90	80~120	$120 \sim 160$	140~180	_

Identification color: End-light yellow, secondary-green

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.06	0.49	1.38	0.011	0.002

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	gth, Tensile Strength, MPa	Elongation,	Charpy 2V-notch J		
MPa	MPa	%	at −45°C	at −30°C	
474	562	29	107	141	

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)			2.6	3.2	4.0	5.0
	Length (mm)		350	400	450	450
	Current	F, H-Fil, H	70~100	100~140	$150 \sim 200$	190~240
	А	V-up, OH	60~90	80~120	$120 \sim 160$	140~180

Identification color: End-light yellow, secondary-light yellow

JIS Z 3211 E4948 *AWS A5.1 E7048

For 490MPa High Tensile Strength Steel

APPLICATIONS

SMAW

Tack welding of mild steel and 490MPa high tensile strength steel for ships, structures and bridges.

CHARACTERISTICS

TW-50 is a low hydrogen type electrode for tack welding in all positions. Crack resistance, arc restriking, slag removal and resistance to moisture absorption are excellent. Vertical downward welding is easy and assures high efficiency using the same current as flat position.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pits at arc starting and arc length should be kept as short as possible.

WELDING POSITION

L-53

JIS Z 3211 E5716-U *AWS A5.1 E7016

For 540MPa High Tensile Strength Steel

APPLICATIONS

Welding of 540MPa high tensile strength steel for pressure vessels, bridges, machineries etc.

CHARACTERISTICS

L-53 is a ultra low hydrogen type electrode for all positions. Weld metal shows excellent mechanical properties even after long postweld PWHT.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pits at arc starting and arc length should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

42

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.08	0.45	1.02	0.010	0.007

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -30°C, J
460	530	30	110

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm))	2.6	3.2	4.0
Length (mm)		300	350	400
Current	F, H-Fil, H	100~130	130~160	$170 \sim 220$
	V-down	110~150	140~170	190~230
A	OH	70~90	110~140	140~170

Identification color: End-brown, secondary-light yellow

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

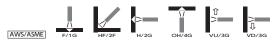
С	Si	Mn	Р	S	Mo
0.08	0.59	0.93	0.015	0.003	0.18

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J	PWHT
530	590	30	210	As-welded
460	540	32	250	620°C×15h

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)			3.2	4.0	5.0	6.0
	Length (mm)		350	400	400	450
	Current	F, H-Fil, H	90~140	130~190	180~240	$250 \sim 310$
	А	V-up,OH	80~120	110~170	140~200	_


Identification color: Light gray

43

Covered Arc Welding Electrodes for Mild Steel and 490^{~550}MPa High Tensile Strength steel

					<u> </u>	
Brand Name		fication lor Secon-	Specifi	ication AWS	Dia. mm	Application and Characteristics
S-03	Scarlet	dary Yellow	Z 3211 E4303	☆ A5.1 E6013	3.2 4.0 5.0 6.0	Lime-titania type electrode showing excellent weldability in vertical and overhead positions. A smooth and beautiful bead without undercuts and excessive reinforcement is obtained due to good slag fluidity and coverage.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
NS- 03Hi	Blue	_	Z 3211 E4303-U	☆ A5.1 E6013	$2.0 \\ 2.6 \\ 3.2 \\ 4.0 \\ 5.0 \\ 6.0$	Lime-titania type electrode assuring high ef- ficiency in welding complicated structure of thin and medium thick plates. It produces a small amount of fumes and is highly resistant to mois- ture absorption. Arc is sharp, concentrated and easy to restrike. Slag is easy to remove. It can deposit a smooth and long bead even in inclined position.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
S-03Z	Blue	Scarlet	Z 3211 E4303-U	☆ A5.1 E6013	2.0 2.6 3.2 4.0 5.0	Lime-titania type electrode for steel frames, bridges and sheet metals. Arc is soft, spatters are few, and arc restriking and slag removal are ex- cellent in horizontal fillet welding. It can deposit a smooth and long bead.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
A-17	Green	Scarlet	Z 3211 E4319-U	☆ A5.1 E6019	$\begin{array}{c} 2.6 \\ 3.2 \\ 4.0 \\ 4.5 \\ 5.0 \\ 6.0 \\ 7.0 \end{array}$	Ilmenite type electrode with excellent mechanical properties, crack resistance and X-ray quality. Operation is easy in all positions due to its soft arc and stable slag fluidity. It is extensively used throughout industry for all types of work.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
A-10	Purple	Light green	Z 3211 E4319	☆ A5.1 E6019	$\begin{array}{c} 2.0 \\ 2.6 \\ 3.2 \\ 4.0 \\ 4.5 \\ 5.0 \\ 6.0 \end{array}$	Ilmenite type electrode with excellent operational characteristics and weldability. Sharp arc and excellent slag coverage assure beautiful bead ap- pearance with fine ripples and without undercuts. Operational characteristics in vertical and over- head positions excel other ilmenite electrodes.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
A-14	Scarlet	Red	Z 3211 E4319-U	☆ A5.1 E6019	$2.6 \\ 3.2 \\ 4.0 \\ 4.5 \\ 5.0 \\ 6.0 \\ 7.0$	Ilmenite type electrode with excellent weldability especially in vertical upward position. Beautiful bead appearance free from defects such as incom- plete penetration and undercuts is obtained since manipulation is easy due to smooth flow of slag round to the front of weld and even solidification of molten metal. Weld metal shows good impact properties and ductility.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
	AT () T	0.111			1	

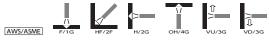
Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Тур	Typical Chemical Composition of Weld Metal (%)			Typical Mechanical Properties of Weld Metal					
С	Si	Mn	Р	s	Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J	
0.08	0.12	0.42	0.018	0.012	410	470	28	110	
0.07	0.17	0.39	0.015	0.009	435	490	28	100	
0.07	0.19	0.41	0.018	0.014	430	460	30	110	
0.07	0.08	0.46	0.015	0.012	390	450	29	-20°C 72	
0.08	0.12	0.40	0.019	0.011	410	460	28	-20°C 73	
0.08	0.13	0.53	0.018	0.010	400	460	30	−20°C 94	

1

• 45

WELDREAM


SMAW

1

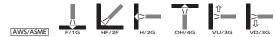
Covered Arc Welding Electrodes for Mild Steel and 490^{~550}MPa High Tensile Strength steel

India Secondary JIS AWS India Application and Characteristics Indigo End Secondary JIS AWS Imm Application and Characteristics L-43LH Silver Indigo Z 3211 - 4.0 5.0 Secondary Secondary L-43LH Silver Indigo Z 3211 - 4.0 5.0 Secondary Secondary <td< th=""><th>traint t joints el and 00MPa cellent ure re- velding t crack</th></td<>	traint t joints el and 00MPa cellent ure re- velding t crack
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	traint t joints el and 00MPa cellent ure re- velding t crack
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\mathbf{Z}_{\text{resistance, mechanical properties and X-ray}} = \mathbf{Z}_{\text{resistance, mechanical properties and X-ray}} = \mathbf{Z}_{resistance, mechanic$	
S-16 Silver E4316-U E7016 5.0 stable arc and wide welding current range 6.0 extensively used throughout industry for al 8.0 of work.	e to its e. It is
Welding Position AWS/ASME F/1G HF/2F H/2G OH/4G VU/3G	
$ \begin{array}{ c c c c c c c c } \hline S\cdot 16LH & Red & Orange & Z 3211 \\ S\cdot 16LH & Red & Orange & Z 3211 \\ S\cdot 16LH & E4916 & & & \\ \hline S\cdot 16LH & & \\ \hline S\cdot 16L$	tent is letal is n type relding
Welding Position AWS/ASME F/1G HF/2F H/2G OH/4G VU/3G	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	iciency g since s high l prop- various ertical
Welding Position AWS/ASME VD/3G	

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Тур	ical Che of We	emical (eld Meta	Composi al (%)	tion		Typical Mechanical Properties of Weld Metal							
С	Si	Mn	Р	s	Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J					
0.04	0.41	0.34	0.008	0.005	400	460	33	-30°C 180					
0.07	0.58	1.10	0.011	0.008	460	540	32	-30°C 180					
0.05	0.48	0.64	0.012	0.007	440	510	32	30°C 200					
0.08	0.53	0.84	0.014	0.011	440	540	31	170					

1


1

• 46 • 47

Covered Arc Welding Electrodes for Mild Steel and 490~550MPa High Tensile Strength Steel

Brand		ication lor	Specif	ication	Dia.	Application and Characteristics
Name	End	Secon- dary	JIS	AWS	mm	Application and Characteristics
EX-55	Green	Purple	Z 3211 E4916-U	☆ A5.1 E7016	$3.2 \\ 4.0 \\ 5.0 \\ 6.0 \\ 7.0$	Low hydrogen type electrode which produces an extremaly small amount of fumes. Weldability and X-ray properties are excellent and extremely low diffusible hydrogen content of weld metal as- sures excellent crack resistance and mechanical properties.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
EX-50F	Blue	Pink	Z 3211 E4940-G	☆ A5.1 E7024	4.0 4.5 5.0 5.5 6.0 6.4	Iron powder titania type electrode which pro- duces an extremely small amount of fumes. It is used for plates with carbon equivalent (C+1/6M n+1/5Cr+1/5Mo+1/5V+1/15Ni+1/15Cu) less than 0.36% and thickness up to 25 mm, and gives a beautiful bead of equal leg length and free from undercuts. Slag is easy to remove and weld metal is not susceptible to primer. It also is suitable for gravity welding.
	Welding	Position	AWS/ASME	F/1G	HF/2F	-
M-50G	Light green	_	Z 3211 E4940-G	★ A5.1 E7024	3.2 4.0 4.5 5.0 5.5 6.0	Iron powder titania type electrode for weiding 490MPa high tensile strength steel up to 12.7 mm thick. It assures a beautiful bead of equal leg length and free from undercuts. Spatters are few and slag is easy to remove. It is not susceptible to primer and can deposit a long bead. It also is suitable for gravity welding.
	Welding	Position	AWS/ASME	F/1G	HF/2F	-
LM-55G	Light green	Purple	_	☆ A5.1 E7028	5.0 5.5 6.0 6.4 7.0 8.0	Iron powder low hydrogen type electrode for flat and horizontal fillet welding. It assures beautiful, flat bead free from undercuts and of equal leg length. Weld metal shows excellent mechanical properties and crack resistance. It also is suitable for gravity Welding.
	Welding	Position	AWS/ASME	F/1G	HF/2F	* =

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Тур	ical Che of We	emical (eld Meta	Composi al (%)	tion		Typical Mechan of Wel	nical Properties d Metal	
С	Si	Mn	Р	s	Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
0.08	0.60	1.10	0.010	0.005	510	570	31	-30°C 160
0.07	0.39	0.76	0.017	0.010	460	520	27	88
0.07	0.37	0.90	0.016	0.010	470	540	30	100
0.06	0.20	1.19	0.014	0.010	460	530	29	120

1

• 48 WELDREAM

YF-15 × Y-D YF-15 × Y-CM

*JIS Z 3183 S50J2-H *AWS A5.17 F7A4-EH14 *JIS Z 3183 S50J2-H *AWS A5.23 F8A2-EG-A3 F7P2-EG-A3

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

SAW

Flat butt and fillet welding of steel frames, bridges, machinery and storage tanks. The combination with Y-D wire is used for mild steel and 490MPa high tensile strength steel and Y-CM for 490MPa high tensile strength steel.

CHARACTERISTICS

The combination assures excellent impact properties, especially stable impact properties at low temperatures with YF15 × Y-CM in single-layer welding.

GUIDELINES FOR USAGE

- 1. An excessive amount of flux may cause disorder of bead ripples in high current welding.
- 2. An excessively narrow groove in multi-layer welding should be avoided since it may deteriorate slag removability.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	Combination	C	Si	Mn	D	s	Mo	Base	Plate Thickness	Welding
	Combination	U	51		г	a	MO	Metal	mm	Method
А	YF-15 ×Y-D	0.14	0.45	1.56	0.020	0.016	-	SM520C	38	X groove, multi-layer
В	YF-15 ×Y-CM	0.10	0.39	1.25	0.018	0.014	0.19	SM490B	13	I groove, one pass both sides

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

		Joint Ten	Charpy 2 V-notch, J				Plate Thickness	Welding	
	Combination	Tensile Strength, MPa	Location of	1000	2000	000	Base Metal	mm	Method
		MPa	Fracture	-40 °C	-2010	0.0		шш	Wiethou
٨	YF-15	560	Base	36	51	76	SM520C	38	X groove,
AI	×Y-D	500	metal	- 00	91	10	51415200	90	multi-layer
в	YF-15	550	Base	41	65	84	SM490B	13	I groove, one pass
Б	×Y-CM	000	metal	41	00	04	SW1490D	10	both sides

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness	Wire Dia.	Groove	Pass	Current,	Voltage,	Speed,	Note
mm	mm	Geometry	rass	A	V	cm/min	note
			1	800	36	30	
38	4.8		2	740	36	30	Multi-
90	4.0		3	940	36	30	laver
		×80×2 3~5	4, 5	740	36	32	
13	4.8	5 13 5	1	650	32	60	one pass
15	4.8		2	750	34	60	both sides

YF-15B × Y-DM3

*JIS Z 3183 S532-H *AWS A5.23 F7A4-EG-G F7P4-EG-G

For 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of thick 490MPa high tensile strength steel plates to be used as welded or after post welding stress relieving annealing for ships, machinery and pressure vessels.

CHARACTERISTICS

Sufficient strength and stable impact values are assured even after stress relieving annealing for long hours in multi-layer welding of thick plates.

GUIDELINES FOR USAGE

- 1. An excessive amount of flux may cause uneven ripples in high current welding.
- 2. An excessively narrow groove should be avoided since it makes slag difficult to remove.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Mo	Base Metal	Plate Thickness mm	Welding Method
0.08	0.43	1.57	0.021	0.010	0.25	SB480	100	Multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Tensile Test				Charpy 2	2 V-notch, J				
	Test Temp- erature °C	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	-30°C	0°C	PWHT	Base Metal	Plate Thickness mm	Welding Method
_	R. T.	550	610	25	54	110	As welded	SB480	100	Multi-laver
	R. T.	460	540	32	98	130	630°C×13h	50480	100	munnayer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
100	4.8		1~58	(L) 650 (T) 700	33 34	60	Multi- layer

VELDREAN

NF-1 × Y-D

*JIS Z 3183 S532-H *AWS A5.17 F7A4-EH14 F7P2-EH14

For Narrow gap of Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

SAW

Narrow gap welding and single flat butt welding of mild steel and 490MPa high tensile strength for pressure vessels, steel frames, bridges and heavy electric machinery.

CHARACTERISTICS

In use of NF-1, outstanding efficiency and economy are obtained in multi-layer (one pass one layer) narrow gap welding of thick plates. In other words, flux consumption rate is low and slag is extremely easy to remove.

Weld metal of NF-1 x Y-D shows excellent toughness. Weldability and mechanical properties are excellent also in high current welding with normal groove.

GUIDELINES FOR USAGE

An excessive amount of flux in a deep groove may cause disorder of bead ripples.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	С	Si	Mn	Р	s	Base Metal	Plate Thickness mm	Welding Method
Α	0.08	0.27	1.30	0.018	0.011	SM490B	20	multi-layer
В	0.10	0.18	1.39	0.020	0.007	A516Gr70	100	I narrow groove, multi-layer

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Yield Strength,	Tensile Strength,		Charpy 2 V-notch, J		PWHT	Base	Plate Thickness	Welding	
	MPa	MPa	%	-40°C	−20°C	$0^{\circ}\mathrm{C}$	FWHI	Metal	mm	Method
А	490	540	32	81	140	170	As Weld	SM490B	20	multi- layer
В	490	570	30	39	130	130	625°C ×10hr	A516Gr70	100	I narrow groove, multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness	Wire Dia.	Groove Geometry	Pass	Current,	Voltage,	Speed,	Note
mm	mm	mm	1 455	А	V	cm/min	11000
20	4.8		1~11	500	36	30	Multi- layer
			$1 \sim 5$	450	31	$30 \sim 35$	
			6~13	500	32	35	Multi-
100	4.8		$14 \sim 20$	550	33	35	layer
			$21 \sim 26$	600	34	35	
			27	650	34	35	

NF-1 × Y-DM3

*JIS Z 3183 S58J2-H *AWS A5.23 F8A4-EG-G F8P2-EG-G

For Narrow gap of Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Narrow gap welding and single layer welding of 490MPa high tensile strength for pressure vessels, heavy electric machinery.

CHARACTERISTICS

Outstanding efficiency and economy are obtained in multi-layer narrow gap welding of thick plates since flux consumption rate is low and slag is extrmely easy to remove. Weld metal shows excellent toughness. Weldability and mechanical properties are excellent also in high current welding with normal groove and strength is sufficient even after stress relief annealing for long hours.

GUIDELINES FOR USAGE

An exessive amount of flux may cause disorder of bead ripples in narrow groove welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	С	Si	Mn	Р	s	Mo	Plate Thickness mm	Base Metal	Welding Method
Α	0.07	0.20	1.50	0.015	0.004	0.011	20	SM490B	multi-layer
В	0.06	0.24	1.38	0.014	0.008	0.007	100	A516Gr70	I narrow groove, multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

		Yield Strength,	Tensile Strength,	Elon-gation,	Charp	y 2 V-n	otch, J	PWHT	Base	Plate Thickness	Welding
		MPa	MPa	%	-40°C	-20°C	0°C	FWIII	Metal	mm	Method
-	А	550	600	29	37	74	140	628°C ×4hr	SM490B	20	multi- layer
	В	510	590	33	64	93	150	625°C ×10hr	A516Gr70	100	I narrow groove, multi·layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness	Wire Dia.	Groove Geometry	Pass	Current,	Voltage,	Speed,	Note
mm	mm	mm	1 455	А	V	cm/min	14000
20	4.8		1~11	500	32	30	Multi [.] layer
			1~3	450	30~31	25	
	(T) 9.9		4~21	(L) 500	31~32	40~50	M14:
100	(L) 3.2 (T) 3.2		4~21	(T) 550	31~32	40~50	Multi- layer
	(1) 3.2		$21 \sim 26$	(L) 600	32	50	layer
			27	(T) 650	31	50	

ELDREAM

$NF-11H \times Y-D$ NF-11H × Y-DM3 $NF-11H \times Y-E$

*JIS Z 3183 S502-H/*AWS A5.17 F7A4-EH14

*AWS A5.23 F7A6-EG-G

*AWS A5.23 F8A4-EG-G

For Horizontal Welding

APPLICATIONS

SAW

1

NF-11H × Y-D: Horizontal welding for HT490 MPa grade steel used in large scale tank NF-11H × Y-DM3: Horizontal welding for aluminium-killed low temperature service NF-11H × Y-E: Horizontal welding for HT550-610 MPa grades

CHARACTERISTICS

NF-11H is a fused flux suitable to horizontal welding for a circumferential joint in a large scale of cylindrical tank.

GUIDELINES FOR USAGE

- 1. Flux should be dried at 200~350°C for 60 minutes or over before welding.
- 2. Foreign materials such as rust and oil in weld area should be completely removed to prevent weld crack and pits. 3. Welding current for 1st run should be kept less than 500 amps. and welding
- speed should be less than 40 cm/min.
- 4. Recommended welding power source is a DC with drooping characteristic.

WELDING POSITION

AWS/ASME H/2G

SIZE AND PACKAGE OF FLUX AND WIRE)

Fl	ux	W	ire
Particle size, mesh	Unit weight,KGS	Recommended dia,mm	Unit weight,KGS
2×X200	25	3.2 or 2.4	25

■ TYPICAL PROPERTIES OF BUTT WELD METAL (Horizontal MULTI-PASS)

Wire		Typica	l chemica	l composi	tion,%		Tensile	Base	Char	py 2 V-no	tch,J
Used	С	Si	Mn	Р	s	Mo	Strength, MPa	Metal	− 46°C	−20°C	0°C
Y-D	0.08	0.41	1.84	0.021	0.008		590	HT490	69	110	150
Y-DM3	0.07	0.24	1.31	0.015	0.005	0.13	510	YP325	86	150	-
Y-E	0.09	0.29	1.63	0.023	0.005	tr.	640	HT610	60	110	150

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Wire Dia. mm	Groove Geometry		ıss 1ber	Current A	Voltage V	Speed cm/min	Heat input kJ/cm	Others
	15		1	390-410	22-24	25	21-24	
	BP 2 3 FP	BP	2	390-410	22-24	35	15-17	
		Dr	3	390-410	22-24	30	17-20	1)Horizontal angle of
			4	390-410	22-24	40-45	11-15	torch: 22.5 deg.
3.2		Arc-ai	r goug	ing (9.5mmφ-	carbon rod w	ith 500 A-40 V	V-95 cm/min)	2)Wire extension:
			1	440-460	22-24	40	15-17	25mm 3)Burden height of
			2	440-460	22-24	40	15-17	flux: 35-40 mm
	19	FP	3	440-460	22-24	40	15-17	
	→		4	440-460	22-24	40-45	13-17	

WELDREAM

Submerged Arc Welding Materials for Mild Steel and 490~550MPa High Tensile Strength Steel

	Spe	cification		Typi	cal Che of	emica f Wele
Brand Name	JIS	AWS	Application and Characteristics	С	Si	Mn
NF-45 × Y-B	☆ Z 3183 S422-S	☆ A5.17 F6A2-EM12	High speed butt and fillet welding of medium thick and thick and thin mild steel plates. The combination is has good tolerance to scales and rust of plates and, therefore, welding defects such as pits scarcely occur.	0.08	0.37	1.14
	Weldi	ng Position	AWS/ASME F/1G			
NF-45	☆ Z 3183 S501-H	☆ A5.17 F7A0-EH14	High speed flat butt and fillet welding of medium and thin mild steel and 490MPa high tensile strength steel for spiral pipes, steel frames, bridges and rolling stock. The combination has good tolerance to scales and	0.13	0.18	0.90
Y-D	5501 11	FTAU EII14	rus of plates and, therefore, welden of scares and rus of plates and, therefore, welding defects such as pits and blowholes scarcely occur. Bead ap- pearance is beautiful.	0.10	0.30	1.4
	Weldi	ng Position	AWS/ASME F/1G			
YF-800 × Y-D	☆ Z 3183 S501-H	☆ A5.17 F7A0-EH14	Flat and horizontal fillet welding of mild steel and 490MPa high tensile strength steel for bridg- es, steel frames, structures and ships. YF-800 is a punicocus flux. Flux consumption rate is low and slag removal is excellent espe- cially in flat and horizontal fillet welding. The combination has good tolerance to scales and rust of plates and, therefore, welding defects such as	0.05	0.08	1.60
10			pits and blowholes scarcely occur.			
10	Weldi	ng Position	pits and blowholes scarcely occur. [AWS/ASME] 1F H/2G			
NF-60 ×	Weldi ☆ Z 3183 S501-H	ng Position ☆ A5.17 F7A0-EH14		0.10	0.30	1.64
NF-60	☆ Z 3183 S501-H	☆ A5.17	AWS/ASME IF H/2G High speed flat butt and fillet welding of thin and medium thickness plates of mild and 490MPa	0.10	0.30	1.64
NF-60 ×	☆ Z 3183 S501-H	☆ A5.17 F7A0-EH14	AWS/ASME 1F H/2G High speed flat butt and fillet welding of thin and medium thickness plates of mild and 490MPa high strength steel.	0.10	0.30	1.64

H/2G

HE/2E

AWS/ASME

			Yield	Tensile	Elonga-	Charp	y 2 V-notch,		D	Plate	
Р	s	Mo	Strength, MPa	Strength, MPa	tion, %	°C	J	PWHT	Base Metal	Thick- ness mm	Welding Method
			Joir	nt Tensile Tea	st						
0.015	0.012	_	_	470	_	0	56	As welded	SS400	20	Y groove, one pass both sides
			Joi	nt Tensile Te	st						
0.019	0.018	—	_	460	_	0	64	As welded	SS400	12	I groove, one pass both sides
			Joir	nt Tensile Tes	st						
0.020	0.013	_	_	550	_	0	35	As welded	SM490B	12	I groove, one pass both sides
0.020	0.006	_	440	540	29	-20	57	As welded	SM490A	25	Multi-layer
0.018	0.012		_	480	_	0	45	As welded	SM400B	12	I groove, one pass both sides
						-20	54				
_	_	_	430	540	28	0	120	As welded	SM490A	100	Multi-layer
						20	140	weitteu			

Typical Mechanical Properties of Weld Metal

Composition

Metal (%)

1

Remarks

• 56

Submerged Arc Welding Materials for Mild Steel and 490~550MPa High Tensile Strength Steel

	Spe	cification		Турі	cal Cho o	emical f Weld
Brand Name	JIS	AWS	Application and Characteristics WWS Flat butt and fillet welding of mild steel an 490MPa high tensile strength steel for stee frames, bridges, pipes and appearance are excellent an pock marks scarcely occur in wide range of welling conditions. Slag is easy to remove in flat fill welding. The combination is economical sin wire melting rate is high and flux consumption rate is low. tion AWS/ASME F/1G A5.17 Welding of thick plates for 490MPa high streng steel to be used under as-welded and postwe teat treatment for structures and pressure vesels. tion AWS/ASME F/1G A5.17 High speed flat butt and fillet welding of mild steel and 490MPa high tensile strength steel for apples, steel frames, bridges and rolling stock. tion AWS/ASME F/1G A5.17 High speed flat butt and fillet welding of mild steel and 490MPa high tensile strength steel for pipes, steel frames, bridges and rolling stock. tion AWS/ASME F/1G A5.17 Or EH14 A5.23 F/1G tion AWS/ASME F/1G A5.23 F/1G A5.23 F/1G A5.23 F/1G A5.23 F/1G ondition the combined wire of CMS is recommended.	с	Si	Mn
YF-15A ×	☆ Z 3183 S50J2-H	☆ A5.17 F7A4-EH14	Bead shapes and appearance are excellent and pock marks scarcely occur in wide range of weld- ing conditions. Slag is easy to remove in flat fillet	0.06	0.49	1.56
Y-D			wire melting rate is high and flux consumption	0.11	0.36	1.55
	Weldi	ng Position	AWS/ASME F/1G			
NF-100 × Y-DS	☆ Z 3183 S532-H	☆ A5.17 F7A6-EH14 F7P6-EH14	Welding of thick plates for 490MPa high strength steel to be used under as-welded and postweld teat treatment for structures and pressure ves- sels.	0.07	0.41	1.54
	Weldi	ng Position	AWS/ASME F/1G			
YF-38 ×	☆ Z 3183 S502-H	☆ A5.17 F7A0-EH14	High speed flat butt and fillet welding of mild steel and 490MPa high tensile strength steel for pipes, steel frames, bridges and rolling stock. High efficiency and economy are obtained due to high deposition rate and low flux consumption	0.14	0.17	0.93
Y-D			rate. The combination has good tolerance to rust and dust and assures beautiful bead appearance.	0.10	0.31	1.33
	Weldi	ng Position	AWS/ASME F/1G			
NF-80 × Y-CMS	☆ Z 3183 S502-H	☆ A5.23 F7A2-EA4-A2 F7P2-EA4-A2	Multi-layer narrow gap welding of thick plates for 490MPa high strength steel. In case where tensile strength is required more than 490MPa after PWHT condition the combined wire of Y- CMS is recommended.	0.07	0.34	1.30
	Weldi	ng Position	AWS/ASME F/1G	1		
	ê	1	ł		1	

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Comp Metal	osition (%)		Typical Mechanical Properties of Weld Metal						R	emarks		
			Yield	Tensile	Elonga-	Charp	y 2 V-notch,		D	Plate		
Р	s	Mo	Strength, MPa	Strength, MPa	tion, %	°C	J	PWHT	Base Metal	Thick- ness mm	Welding Metho	
						-40	56					
0.019	0.011	_	450	530	32	-20	87	As welded	SM490B	25	Multi-layer	
						0	110					
0.015	0.006	_	410	550	31	0	68	As welded	SM490B	19	X groove, one pass both sides	
						-40	60					
			450	560	28	-20	80	As welded				
_						0	130			30		
	-	_				-40	98		SM490A	30	Multi-layer	
			400	510	36	-20	160	620°C× 5hr				
						0	170					
			Joir	nt Tensile Te	st		1				1	
0.000	0.010			450		-20	71	As	00400	0	I groove,	
0.020	0.018	_	_	450	-	0	76	welded	SS400	9	one pass both sides	
			Joir	nt Tensile Te	st							
0.015	0.011			550		-20	26	As	SM490B	10	I groove, one pass	
0.017	0.011	_		550	_	0	45	welded	SM490B	10	both sides	
						-20	41					
			440	560	27	0	88	As welded				
0.010						20	93		CT LLOOA	100		
0.019	0.010	0.45				-20	71		SM490A	100	Multi-layer	
			430	530	29	0	98	620 °C × 5hr				
						20	120	1				

SAW

WELDREAM

• 59

SAW

1

Submerged Arc Welding Materials for Mild Steel and 490~550MPa High Tensile Strength Steel

	Spe	cification		Typical Chemical of Weld			
Brand Name	JIS	AWS	Application and Characteristics	C Si :	Mn		
NSH-53Z × Y-DL	☆ Z 3183 S502-H	_	Flat butt welding and fillet welding of double bev- el grooves of mild steel and 490MPa high tensile strength steel for steel frames, and corner joint welding of box columns. It is possible to weld up to 60mm thick plates in one run since the flux gives a deep penetration.	0.12	0.28	1.50	
	Weldi	ng Position	AWS/ASME F/1G				
NF-1 × Y-E	☆ Z 3183 S532-H	★ A5.23 F8A4-EG-G ☆ A5.23 F8P2-EG-G	Narrow gap welding and single-layer welding of 490MPa high tensile strength steel. Slag is extremely easy to remove and toughness is high. Economical welding is assured since flux con- sumption rate is low.	0.07	0.32	1.89	
	Weldi	ng Position	AWS/ASME F/1G	1			

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

AWS/ASME F/1G HF/2F H/2G OH/4G VU/3G VD/3G IF

Composition Metal (%)		Typical Mechanical Properties of Weld Metal			Remarks						
Р	s	Mo	Yield Strength, MPa	Tensile Strength, MPa	Elonga [.] tion, %	Charp °C	y 2 V-notch, J	PWHT	Base Metal	Plate Thick- ness mm	Welding Method
0.016	0.005		370	530	30	0	50	As welded	SM490B	50	Y groove, one pass with backing plate.
						-40	31	630 °C×	A516		I groove, narrow gap,
0.011 0.004	.004 —	480 570		28	-20	76 140	10hr		100	multi-layer welding (Tandem)	

0 61

SAW

1

YM-26

JIS Z 3312 YGW11 *AWS A5.18 ER70S-G

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

GMAW

Welding of mild steel and 490MPa high tensile strength steel for automobiles, rolling stock, machinery, air conditioners, tools light gauge steel, steel frames, bridges and ships.

CHARACTERISTICS

YM-26 is a gas metal arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and weldability is excellent even in high welding current range. High efficiency is obtained since deposition rate is high and penetration is deep.

GUIDELINES FOR USAGE

- 1. Applicable welding position: flat position, horizontal fillet and horizontal position.
- 2. Heat input: MAX 30kJ/cm and Interpass temperature: MAX 250°C for 490MPa steel.
- 3. Suitable wire extension (between contact tip and base metal): 20-30mm.

WELDING POSITION

TYPICAL	CHEMICAL	COMPOSITION	OF WELD	METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ti
CO_2	0.07	0.52	1.11	0.017	0.011	0.04

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

PWHT	Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
As-welded	460	560	28	130
625°C×3hr	400	510	31	180

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter	· (mm)	1.0	1.2	1.4	1.6	2.0
0	F	$70 \sim 250$	$100 \sim 350$	$150 \sim 470$	$200 \sim 550$	$250 \sim 650$
Current	Н	$70 \sim 250$	$100 \sim 350$	$150 \sim 450$	$200 \sim 450$	_
Π	H-Fil	$70 \sim 250$	130~300	$150 \sim 400$	$200 \sim 450$	—

JIS Z 3312 YGW12 *AWS A5.18 ER70S-6

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for automobiles, rolling stock, electric appliances, machinery, air conditioners, light gauge steel, pipes, steel frames, bridges and ships.

CHARACTERISTICS

YM-28 is a gas metal arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and weldability is excellent even with low current under 200A. Welding of thin plates in all positions. especially in vertical downward position, is easy. Also, it shows better weldability in high speed welding of thin plates with currents of less than 300A than wires of other types. Also with Ar+CO₂ mixture gas, arc is stable, spatters are few and bead is beautiful in a wide welding current range.

GUIDELINES FOR USAGE

- 1. In vertical downward welding, wire should be held at an angle slightly above horizontal.
- 2. Optimum arc voltage should be selected in accordance with welding current to maintain stable dip transfer mode. If voltage is too high or too low, dip transfer frequency will decrease.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.08	0.60	1.10	0.014	0.010
$Ar+20\%CO_2$	0.08	0.70	1.25	0.015	0.011

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Shield Gas	Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
$\rm CO_2$	450	550	27	120
$Ar+20\%CO_2$	480	590	27	130

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (m	ım)	0.9	1.0	1.2	1.4
	F, H-Fil	70~200	$70 \sim 250$	$80 \sim 350$	$250 \sim 550$
C I	Н	70~140	70~160	80~180	_
Current A	OH	70~100	70~120	$80 \sim 150$	_
Л	V-up	70~140	70~160	80~180	_
	V-down	70~200	70~220	80~240	_

GMAW

YM-28Z

For Molten Galvanized Steel, Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of molten galvanized steel for light gauge steel, pipes, steel frames, rolling stock and containers, and mild steel and 490MPa steel for various structures.

CHARACTERISTICS

YM-28Z is a gas metal arc welding wire to be used with CO_2 shield gas. In the welding of molten galvanized steel plates of 270g/m2 (Z27) galvanization level, blowholes and spatters are less and bead is sounder than conventional YGW 14 type wires. It is also used for joining steel plates without galvanization.

GUIDELINES FOR USAGE

1. Optimum arc voltage should be selected in accordance with welding current to carry out stable welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S
CO_2	0.05	1.04	1.38	0.005	0.010

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at 0°C, J
460	600	30	76

■ TYPICAL WELD JOINT TEST

Joint Ter	nsile Test	Bend	l Test			Welding Conditions			
Tensile Strength, MPa	Location of Fracture	Face bend 180°	Root bend 180°	Base metal	Plate Thickness mm	Shield Gas	Current A	Voltage V	Speed cm/min
460	Base metal	No defect	No defect	SGH400 Z27	3.2	CO_2	160	20	60

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		0.9	1.2	
	F, H-Fil	70~200	100~350	
Current (A)	Н	70~140	80~180	
Current (A)	V-up	70~140	80~180	
	V-down	70~200	80~240	

YM-55AZ

*AWS A5.18 ER70S-G

For X42 to X70 pipeline and root welding

APPLICATIONS

Welding of X42 to X70 with Ar+CO₂ Welding of root pass

CHARACTERISTICS

YM-55AZ that is used with Ar+CO₂ shielding gas is a solid wire for gas metal arc welding. Arc is stable, spatters are few and weldability is excellent even in high welding current range. High efficiency is obtained in automatic and semi-automatic welding due to high deposition rate and deep penetration. It is also applicable Pulse welding process with Ar+CO₂, automatic and robot welding process.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.09	0.65	1.35	0.015	0.010

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Shielding	Yield Point,	Tensile Strength,	Elongation,	Charpy 2V-notch	
gas	MPa	MPa	%	at −20°C, J	
$Ar-20\%CO_2$	572	612	30	155	

TYPICAL WELD JOINT TEST

Base metal	Tensile test		Charpy 2V-notch		
Plate Thickness	Tensile Strength, MPa	Fracture position	-40°C	-20°C	
X70 equivalent 22	625	Base metal	86	121	

TYPICAL WELDING CONDITIONS

Pass	Weldingc onsumables (wire dia.mm)	Welding method	Wire feedspeed m/min	Welding current A	Arc voltage V	Travel speed cm/min	Heat input kJ/cm
Root pass (inner side)	YM-55AZ ER70S-G (0.9 or 1.0)	Short circuit arc welding (DC+)	7.3	170	21	70	3.1
Hot pass	YM-55AZ	Pulse welding	12.5	220	24	70	4.5
Filler layers	ER70S-G (1.0)		10.5	180	23	45	5.6
Cover pass		(DC+)	6.6	125	22	45	3.8

GMAW

65

WELDREAM

YM-285

JIS Z 3312 YGW15 *AWS A5.18 ER70S-G

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

GMAW

Welding of mild steel and 490MPa high tensile strength steel for automobiles, rolling stock, machinery, air conditioners, tools light gauge steel, steel frames, bridges and ships.

CHARACTERISTICS

YM-28S is a gas metal arc welding wire to be used with $Ar+CO_2$ shield gas. Arc is stable, spatters are few, weldability is satisfactory and beautiful and flat bead is obtained in high current spray transfer welding. Welding in vertical position is easy and weld metal shows excellent toughness. It is also suitable for dip transfer welding with low current. It assures excellent weldability and properties of weld metal in pulsed arc welding.

GUIDELINES FOR USAGE

- 1. The spray arc in the high current range and short circuit arc in the low current range are applicable. Excellent weldability and mechanical properties are also obtained in the pulse welding.
- 2. It should be applied that the shielding gas is Ar-5~25CO₂.

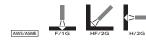
WELDING POSITION

*AWS A5.18 ER70S-G

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Welding of mild steel and 490MPa high tensile strength steel for automobiles, rolling stock, machinery, air conditioners and light steel frames.


CHARACTERISTICS

YM-TX is a gas metal arc welding wire to be used with $Ar+CO_2$ shield gas. As the slag volume is extremely low on the welding bead, the weld parts have excellent electrodeposition coating ability. Arc is stable, spatters are few, weldability is satisfactory and bead shape is flat. Weld metal shows excellent toughness and can be applied to high tensile steel sheets for automotive. It is possible to short-circuit the transfer weld with a low current. It assures excellent weldability and properties of weld metal in pulsed arc welding.

GUIDELINES FOR USAGE

- 1. The spray arc in the high current range and short circuit arc in the low current range are applicable. Excellent weldability and mechanical properties are also obtained in the pulse welding.
- 2. It should be applied that the shielding gas is $Ar-5\sim 25CO_2$.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	
0.08	0.45	0.85	0.011	0.015	

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2	V-notch J
MPa	MPa	%	-20°C	0°C
480	570	31	130	150

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		0.9	1.0	1.2	1.4	1.6
Current	F, H-Fil	$70 \sim 200$	$70 \sim 250$	$80 \sim 350$	$150 \sim 400$	$200 \sim 450$
range	V-up	$70 \sim 150$	$70 \sim 150$	80~170	_	_
А	Н	$70 \sim 150$	70~180	70~200	_	_

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Si Mn		S
0.11	0.01	1.21	0.006	0.007

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2	V-notch J
MPa	MPa	%	-40°C	−20°C
460	540	27	154	163

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diamete	er (mm)		1.0	1.2	1.4
Curren	t range	F, H-Fil	$70 \sim 250$	80~400	$150 \sim 400$
	4	Н	70~250	80~400	—
Curren	t range A	F, H-Fil H			

WELDREAM

Gas Metal Arc Welding Wires for Mild Steel and 490~550MPa High Tensile Strength Steel

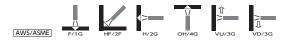
Brand	Shield	Specif	ication	Dia.				
Name	Gas	JIS	AWS	mm	Application and Characteristics			
YM-SCM	CO_2	Z 3312 ☆A5.18 G49A0C16 ER70S-3		0.6 0.8	YM-SCM is a gas metal arc welding wire to be used for all positional welding of extremely thin steel plates for automobile and farm machineries compo- nents.			
		Welding Position		AWS/	AWS/ASME F/1G H/2G VU/3G			
YM-25	Ar + CO ₂	Z 3312 YGW16	☆A5.18 ER70S-3	0.8 0.9 1.0 1.2	YM-25 is a gas metal arc welding wire to be used with $Ar+CO_2$ shield gas and is suitable for all position welding of thin plates. Arc is stable, spatters are few and bead is beautiful in dip transfer welding.			
		Welding	Position	AWS/	ASME F/1G OH/4G VU/3G VD/3G			
YM-25S	Ar + CO ₂	Z 3312 YGW16	☆A5.18 ER70S-3		YM-25S is a gas metal arc welding wire to be used with Ar+CO ₂ shield gas and is suitable for all position welding of thin plates. Arc is stable, spatters are few and bead is beautiful in dip transfer welding.			
		Welding	Position	AWS/	ASME F/1G H/2G OH/4G VU/3G			

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Type of Current	Type Chemical Composition of Weld Metal (%) Typical Mechanical Properties of Weld Mrtal									
		Charpy 5 0°	Elonga- tion, %	Tensile Strength, MPa	Yield Strength, MPa	s	Р	Mn	Si	С
DC (+)	9	6	27	560	480	0.012	0.016	1.05	0.52	0.10
	$Ar+20\%CO_2$									
1	120		32	540	420	0.007	0.014	0.80	0.39	0.10
DC (+)				CO_2	Ar+10%					
DC (+)	50	18	28	550	460	0.007	0.014	1.06	0.39	0.09
					CO_2					
	40	14	34	500	400	0.009	0.015	0.62	0.22	0.10
	Shield Gas: $Ar+20\%CO_2$									
DC (+)	As welded	-20°C 150	29	540	480	0.010	0.015	0.00	0.40	0.07
	620°C×1hr	-20°C 150	30	520	450	0.010	0.015	0.92	0.43	0.07

GMAW

1


GMAW

1

Gas Metal Arc Welding Wires for Mild Steel and 490^{~550}MPa High Tensile Strength Steel

Brand	Shield	Specif	ication	Dia.			
Name	Gas	ля	AWS	mm	Application and Characteristics		
YM-24S	ZM-24S Ar + CO ₂			1.2	YM-24S is a gas metal arc welding wire to be used with Ar+CO ₂ shield gas. Spatters are extremely few and bead is beautiful especially in high speed welding (80~150cm/min)of thin plates, 2.0~3.2mm, in combi- nation with a power source with high pulse frequency.		
		Welding	Position	AWS/ASME F/1G HF/2F			
YM-24T	$\operatorname{Ar}_{\substack{+\\ \mathrm{CO}_2}}^{\operatorname{Ar}}$	Z 3312 YGW16		1.2	YM-24T is a gas metal arc welding wire to be used with Ar+CO _z shield gas and has favorable gap-proof performance on high-speed welding of thin steel sheets. Weldability, arc is stable, spatters are few and bead is beautiful. The best effect is obtained in combi- nation with inverter controlled pulsed.		
		Welding	Welding Position		AWS/ASME F/1G HF/2F H/2G		
YM-22Z	$\operatorname{Ar}_{+}_{+}_{\mathrm{CO}_2}$	_		1.2	YM-22Z is a gas metal arc welding wire to be used with Ar+CO ₂ shield gas. Blowholes and spatters are few and bead is sound in one pass fillet welding of al- loified molten galvannealed steel plates of 45 -60g/m ² galvanization level. Also, high speed welding of more than 100cm/min is possible. The best effect is ob- tained in the combination with an inverter controlled pulsed power source.		
		Welding	Position	AWS	ASME F/1G HF/2F VD/3G		

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Type Chemical Composition of Weld Metal (%) Typical Mechanical Properties of Weld Mu								Mrtal	- Type of	
С	Si	Mn	Р	s	Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2V-notch 0°C, J		Current
				Shi	eld Gas: A	$r+20\%CO_2$				
0.09	0.14	0.94	0.006	0.010	380	470	33	-20°C 130	140	DC (+)
	Shield Gas: $Ar+20\%CO_2$									
0.07	0.61	1.21	0.008	0.005	460	570	30		0°C 40	DC (+)
				Shi	eld Gas: A	r+20%CO ₂				
0.09	0.09	0.42	0.010	0.005	_	_	_	-	_	DC (+)

GMAW

1

WELDREAM

For Mild Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

Gas Tungsten Arc Welding of mild steel, 490MPa high tensile strength steel and aluminium-killed steel for low temperature service.

CHARACTERISTICS

YT-28 is filler rods and spool wire for GTAW (TIG welding). to be used with Ar shield gas.

The weld metal shows stable toughness at low temperature range down to -40° C. The weld bead shape is excellent since high fluidity of molten pool and high affinity between molten pool and base metal. It also suitable for uranami (sound penetration bead) welding.

The operability is good since the surface of the filler rod is smooth.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.09	0.77	1.47	0.013	0.011

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch, J		PWHT
MPa	MPa	%	-40°C	−20°C	I WIII
464	579	32	120	163	As weld
429	510	32	—	162	620°C×1hr

■ SIZES<DC(-)>

Diameter (mm)	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)	1000	1000	1000	1000	1000
Weight of spool wire (kg)	12.5	—	—	—	—

Identification color: End-blue

570~950MPa High Tensile Strength Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

SF-60/SF-60A

For 590MPa High Tensile Strength Steel

APPLICATIONS

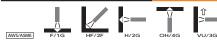
FCAW

2

ELDREAM

74

All position welding for TS 590MPa class steel


CHARACTERISTICS

SF-60 and SF-60A are rutile type seamless flux cored arc welding wires to be used with 100%CO₂ (SF-60) and Ar+20%CO₂ (SF-60A) shield gas and designed for bridges, machineries and structures welding. Weld metal shows excellent toughness in low temperature range at down to -5°C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Brand name	Shielding gas	С	Si	Mn	Р	S	Ni
SF-60	CO_2	0.05	0.50	1.47	0.011	0.005	0.53
SF-60A	$Ar+20\%CO_2$	0.05	0.36	1.35	0.009	0.005	0.41

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Brand	Shielding	Yield Strength,	Tensile strength,	Elongation,	Charpy 2V-notch
name	gas	MPa	MPa	%	at −5°C, J
SF-60	CO_2	590	620	25	100
SF-60A	Ar+20%CO ₂	560	620	29	130

TYPICAL WELD JOINT TEST

Brand	Shielding	Welding	Hoot input	Joint ter	sile test	Charpy
name	gas	position	kJ/cm	Joint ter Tensile strength, MPa	Fracture Location	2V-notch at -5°C, J
SF-60	CO_2	V-up	24.0	610	WM	81
SF-60A	Ar+20%CO ₂	V-up	22.1	610	WM	130

*Base metal: SM570Q (30mm thick.)

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2
Current	F, H, H-Fil	180~300
А	V-up, OH	$180 \sim 250$

SF-60T

*JIS Z 3313 T59J1T1-1CA-G-UH5 *AWS A5.29 E81T1-GC-H4

For 590MPa High Tensile Strength Steel

APPLICATIONS

Rutile-type seamless flux cored wire, designed for 590 MPa class high-tensile steel. Components of deposit metal are based on Ni/Mo, which provides enough strength even in welding of thin plates and intermediate plates. Hydrogen content is low to the same extent as solid wire, and excellent in crack resistance.

CHARACTERISTICS

Butt welding and fillet welding of welded structures using 590MPa class hightensile steel such as transmission towers

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's Any weiging machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
 A suitable shield gas flow rate is 20-25l/min.
 Distance between base metal and tip should be kept within 20-30mm.
 Fully remove rust, moisture, oil, and paint on the welding part since they may

- cause a cold crack or blowhole.
- 5. Perform welding under proper conditions (heat input etc.) according to plate thickness, posture, etc.
- 6. Perform preheating at 50-150°C according to conditions, such as plate thickness, restraint, and welding heat input.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%) <\$hielding gas: CO2>

				<u>`</u>		00
С	Si	Mn	Р	S	Ni	Mo
0.05	0.44	1.65	0.010	0.004	1.22	0.08

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch
MPa	MPa	%	at -5°C, J
600	660	24	64

■ TYPICAL WELD JOINT TEST <Shielding gas: CO₂>

Tensile Strength, Mpa	Location of Fracture	Face Bend	Root Bend	Type of Steel	Diameter (mm)	Plate Thickness (mm)	11000088	Shape of Groove
630	Base Metal + Weld Metal	180°C no defect	180°C no defect	WEL- TEN590RZ	1.6	16	Both side & Multi Layer	Single Bevel

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4	1.6
Current A	F	200~300	$200 \sim 430$	$220 \sim 450$
	V-up	$180 \sim 250$	$200 \sim 250$	—
	H-Fil	200~300	200~430	—

*AWS A5.29 E101T1-GM-H4

For 690MPa High Tensile Strength Steel

APPLICATIONS

FCAW

2

Welding of YP620 steel and 690MPa high tensile strength steel (WEL-TEN™ 690RE, 690 and 690C etc.) of down to -40°C for offshore structures, pressure vessels, tanks, penstocks, turbine casings, crane and construction machineries.

CHARACTERISTICS

SF-70A that is used with Ar+20%CO₂ shielding gas is rutile type seamless flux cored arc welding wire. Weld metal shows excellent toughness in low temperature range down to -40°C. Diffusible hydrogen content is as low as solid wires and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.

- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni
0.06	0.44	1.75	0.012	0.004	1.88

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield strength,	Tensile Strength,	Elongation,	Charpy 2V-notch
MPa	MPa	%	at -40°C, J
730	765	23	88

TYPICAL WELD JOINT TEST

Base metal		Welding	position		nsile test	Charpy
Type of	Plate	Welding	Heat input,	Yield strength,	Tensile strength,	2V-notch at
Steel	thickness	position	kJ/cm	MPa	MPa	−40°C, J
HT780	38mm	Vertical-up	14.6	690	800	68

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)> (Shielding gas: Ar+20%CO₂)

		1 33 1 1 1
Diameter (mm)		1.2
Current	F, H, HF	180~300
А	VU, OH	180~250

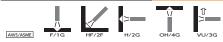
SF-80AM

*AWS A5.29 E111T1-K3M-H4

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of YP690 steel and 780MPa high tensile strength steel (WEL-TEN™ 780RE, 780E and 780C etc.) of down to -20°C for bridges, pressure vessels, tanks, penstocks, turbine casings, crane and construction machineries.


CHARACTERISTICS

SF-80AM that is used with $Ar+20\%CO_2$ shielding gas is rutile type seamless flux cored arc welding wire. Weld metal shows excellent toughness range down to -20°C. Diffusible hydrogen content is as low as solid wires and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance withwelding position, plate thickness and required toughness.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Mo
0.06	0.44	1.64	0.013	0.004	2.14	0.30

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch
MPa	MPa	%	at –20°C, J
819	848	20	73

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diamet	1.2	
Current	F, H-Fil	180~300
Α	VU, OH	$180 \sim 250$

2

VELDREAN

WELDREAM

*AWS A5.29 E111T1-GM-H4

For 780MPa High Tensile Strength Steel

APPLICATIONS

2

WELDREAM

78

Welding of YS690 steel of down to $\mbox{-}40^{\circ}{\rm C}$ for offshore structures, cranes and construction machines.

CHARACTERISTICS

SF-80A is rutile type seamless flux cored arc welding wire to be used with $Ar+20\%CO_2$ shield gas. Weld metal shows excellent toughness in low temperature down to -40°C. Diffusible hydrogen content is as low as solid wire and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. Preheating at 100~150 $^{\circ}\mathrm{C}$ is required in accordance with plate thickness, restraint, heat input, etc.
- 4. A suitable shield gas flow rate is 20-25L/min.
- 5. Distance between base metal and tip should be kept within 15-25mm.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Mo
0.06	0.38	1.60	0.010	0.004	2.37	0.34

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL (Shielding gas: Ar+20%CO₂)

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch
MPa	MPa	%	at -40°C, J
755	803	24	86

■ TYPICAL WELD JOINT TEST (Shielding gas: Ar+20%CO₂)

Base metal		Welding conditions		Joint ter	Charpy2V-	
Type of Steel	Plate Thickness	Welding position	Heat input kJ/cm	Tensile Strength MPa	Location ofFracture	notch at -40°C, J
WEL-TEN™ 780E	20	Vertical-up	13.8	820	HAZ	82

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diamet	1.2	
Current	F, H-Fil	180~300
А	VU, OH	180~250

SM-80A

*AWS A5.28 E110C-G-H4

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of 780MPa high tensile strength steel for frames, bridges, pressure vessels, penstocks and offshore structures.

CHARACTERISTICS

SM-80A is a metal type seamless flux cored arc welding wire to be used with $Ar+20\%CO_2$ shield gas. Arc is stable, spatters and slags are few and weldability is excellent in a wide current range. Bead appearance is beautiful and weld metal shows excellent toughness at low temperatures. Diffusible hydrogen content is as low as solid wires and crack resistance is excellent.

GUIDELINES FOR USAGE

- 1. Arc voltage should be 1 or 2 volt lower than that for conventinal flux cored wires and 4 or 5 volt lower than that for solid wires.
- 2. All dust and rust in groove should be completely removed.
- 3. Preheating at 100~150°C is required in accordance with plate thickness, restraint, heat input, etc.
- 4. A suitable shield gas flow rate is 20-25L/min.
- 5. Distance between base metal and tip should be kept within 20-30mm.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni	Cr	Mo	Other
Ar+20%CO ₂	0.05	0.37	1.38	0.013	0.005	2.51	0.48	0.42	-

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

0.2% Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch
MPa	MPa	%	at –40°C, J
761	821	22	91

TYPICAL WELD JOINT TEST

Joint Ter	nsile Test	Charpy 2V-notch		Charpy 2V-notch	
Tensile Strength	Location of		J	Base metal	Plate Thickness
MPa	Fracture	−60°C	−40°C		mm
824	Base Metal	64	88	WELTEN 780E	20

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diamet	1.2	
Current	F, H	180~300
А	H-Fil	180~300

SMAW

2

For 590MPa High Tensile Strength Steel

APPLICATIONS

Welding of SM570, SPV450 and 590MPa high tensile strength steel (WEL-TEN™ 590) for penstocks, storage tanks, pressure vessels, bridges, offshore structures and machinery.

CHARACTERISTICS

L-60 is an extra low hydrogen type electrode with high resistance to moisture absorption. Weldability in all positions, mechanical properties and X-ray quality are excellent. Weld metal shows satisfactory crack resistance due to its extremely low diffusible hydrogen content.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- Preheating in accordance with the type of steel, plate thickness, restraint, etc., i. e. at 50~100°C for a 35mm thick plate, is necessary to prevent cracks.
- 3. Welding with excessively high heat input, i.e. more than 55 kJ/cm for a 35mm thick plate, should be avoided to assure strength and toughness of weld.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%	١

С	Si	Mn	Ni	Mo
0.07	0.42	1.12	0.73	0.22

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J
540	640	27	170

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	r (mm)	3.2	4.0	5.0	6.0
Length (i	nm)	350	400	400	450
Current	F, H-Fil	70~140	120~190	$190 \sim 250$	250~310
Α	V-up, OH	60~130	90~170	140~190	—

L-60W

JIS Z 3211 E5916-N1M1 *A5.5 E8016-G

For uranami welding in all positions of 590MPa High Tensile Strength Steel

APPLICATIONS

Uranami (sound penetration bead) welding of 590MPa high tensile strength steel pipes for ships, pressure vessels and pipelines.

CHARACTERISTICS

L-60W is a low hydrogen type electrode for uranami welding in all positions. In low current range in root pass welding of pipes, a sound penetration bead without blowholes is obtained due to stable arc, strong arc force. And excellent slag fluidity and coverage.

GUIDELINES FOR USAGE

- 1. DC(-) should be used for uranami welding. However AC or DC(+) have to be used on AWS.
- 2. 3.2mm diameter electrode is recommended for all position welding of pipes with 6-15mm wall thickness.
- 3. Electrodes should be redried at 300-350°C for 60 minutes before use.
- 4. Arc should be started on a small plate or the side of the groove and cut after moving crater to the side of the groove
- 5. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Cu	Ni	Mo
0.07	0.60	1.14	0.012	0.004	0.02	0.64	0.12

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J
577	657	26	116

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(\pm)>

Diameter	(mm)	2.6	3.2	4.0
Length (m	m)	350	400	400
	F	$50 \sim 100$	70~130	$100 \sim 150$
Current	OH	40~80	60~130	$90 \sim 150$
А	VU	40~80	60~130	90~150
	Uranami welding	40~80	60~110	80~140

Indentification color: End-Pink, secondary-Brown

VELDREAM

APPLICATIONS

SMAW

2

VELDREAM

82

Welding of SPV490 and 590MPa high tensile strength steel (WEL-TEN[™] 610) for penstocks, storage tanks, pressure vessels, bridges, offshore structures and machinerv.

CHARACTERISTICS

L-62CF is an extra low hydrogen type electrode for all position welding of 590MPa high tensile strength steel. It is suitable for site welding of storage tanks since its coating flux is highly resistant to moisture absorption even in an atmosphere of high temperature humidity. Extremely low diffusible hydrogen content in weld metal assures excellent crack resistance

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating in accordance with the type of steel, plate thickness, restraint, etc., i.e. at 50~100°C for a 35mm thick plate, is necessary to prevent cracks.
- 3. Welding with excessively high heat input, i.e. more than 55 kJ/cm for a 35mm thick plate, should be avoided to assure strength and toughness of weld.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%
--	---

С	Si	Mn	Ni	Mo
0.07	0.45	1.36	0.70	0.35

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch
MPa	MPa	%	at -20°C, J
590	660	28	170

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		3.2	4.0	5.0
Length (mm)		350	400	400
Current	F, H-Fil	100~140	$140 \sim 190$	$190 \sim 250$
А	V-up, OH	90~130	$120 \sim 170$	140~190

Identification color: End-Golden blown, secondary-Green

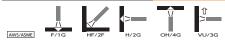
L-60LT

JIS Z 3211 E6216-G *AWS A5.5 E9016-G

For 590MPa High Tensile Strength Steel

APPLICATIONS

Welding of 590MPa high tensile strength steel (N-TUF490) for low temperature service for structures to be used in frigid area, pressure vessels, storage tanks and offshore structures


CHARACTERISTICS

L-60LT is an extra low hydrogen type electrode for all positions with high resistance to moisture absorption. Weld metal shows excellent toughness at temperatures around -50°C and CTOD (crack tip opening displacement) value.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use,
- 2. Preheating in accordance with the type of steel, plate thickness, restraint, etc., i.e. at $50\sim100^{\circ}$ C for a 35mm thick plate, is necessary to prevent cracks.
- 3. Select the optimum heat input in accordance with the required specification of structures and plate thickness to assure desired toughness and CTOD value. Arc length should be kept as short as possible during welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Mo	Ti	В
0.07	0.41	1.51	0.67	0.18	0.03	0.002

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch	
MPa	MPa	%	at -50°C, J	
600	680	26	180	

TYPICAL CTOD VALUES OF WELD JOINT (AS WELDED)

		· · · ·			
Base Metal	Guine	Walding Ganditiana	CTOD Value, (mm)		(mm)
(Thickness)	Groove	Welding Conditions		$-10^{\circ}\mathrm{C}$	
A537C1.2		Diameter: 4.0mm			
Mod (25mm)	Y	Position:V-up	1.17 1.11 1		1.26
1000 (2511111)		Heat Input: 32kJ/cm			

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)			3.2	4.0	5.0	
	Length (mm) Current F, H-Fil		(mm) 350		400	
			100~140	140~190	190~250	
	А	V-up, OH	90~130	120~170	140~190	

Identification color: End-silver, secondary-brown

SMAW

2

VELDREAM

84

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of 780MPa high tensile strength steel (WEL-TENTM 780, 780C, 780P and 780E) for penstocks, pressure vessels, bridges, machinery and turbine casings.

CHARACTERISTICS

L-80 is an extra low hydrogen type electrode with high resistance to moisture absorption. Weldability in all positions, mechanical properties and X-ray quality are excellent. Extremely low diffusible hydrogen content in weld metal assures satisfactory crack resistance.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at $350 \sim 400$ °C for 60 minutes before use.
- 2. Preheating in accordance with the type of steel, plate thickness, restraint, etc., i.e. at $120 \sim 180^{\circ}$ C for a 35mm thick plate is necessary to prevent cracks.
- 3. Welding with excessively high heat input, i.e. more than 45 kJ/cm for a 35mm thick plate, should be avoided to assure strength and toughness of weld.

WELDING POSITION

AWS/ASME F/1G HF/2F	H/2G OH/4G VU/3G
---------------------	------------------

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Cr	Mo
0.05	0.44	1.35	2.52	0.18	0.54

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -20°C, J
740	830	22	96

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		3.2	4.0	5.0	6.0
Length (1	nm)	350	400	400	400
Current	F, H-Fil	100~140	140~190	$190 \sim 250$	250~310
Α	V-up, OH	90~130	120~170	140~190	—

L-80SN

JIS Z 3211 E7816-N9M3U *AWS A5.5 E11016-G

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of 780MPa high tensile strength steel (WEL-TEN^M 780) for offshore structures, pressure vessels, storage tanks and structures to be used in frigid area.

CHARACTERISTICS

L-80SN is a ultra low hydrogen type electrode with high resistance to moisture absorption. Weld metal shows excellent toughness at around -80° C. It can be used with confidence for welding extremely thick plates such as racks of offshore structures since extremely low diffusible hydrogen content in weld metal assures satisfactory crack resistance.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at $350 \sim 400^{\circ}$ C for 60 minutes before use, kept at $100 \sim 150^{\circ}$ C and taken out only as needed.
- 2. Preheating in accordance with the type of steel, plate thickness, restraint, etc., i.e. at 100~150°C for a 35mm thick plate, is necessary to prevent cracks.
- 3. Welding with excessively high heat input, i.e. more than 40 kJ/cm for a 35 mm thick plate, should be avoided to assure strength and toughness of weld.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Мо	Diffusible Hydrogen (Gas Chromatography) ml /100g
0.05	0.36	1.39	4.64	0.48	4.0

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa MPa		Elongation, %	Charpy 2V-notch at -80°C, J
760	860	20	90

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm) Length (mm)		(mm)	3.2	4.0	5.0
		nm)	350	400	400
	Current	F, H-Fil	100~140	140~190	$190 \sim 250$
	А	V-up, OH	90~130	120~170	140~190

Identification color: End-pink, secondary-green

Covered Arc Welding Electrodes for 590~980MPa High Tensile Strength Steel

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Brand		ication lor	Specif	ication	Dia.	Ambigation and Chaugatomistics
$ \begin{array}{c c} \label{eq:Light} L:60S \\ \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Name	End		JIS	AWS	mm	Application and Characteristics
L-62PinkWhiteZ 3211 E6216-G $\stackrel{\times}{\Rightarrow}$ A5.53.2 4.0 5.0Extra low hydrogen type electrode with high 	L-60S	Orange				4.0 5.0	resistance to moisture absorption. It assures satisfactory toughness at '45°C, weldability in all positions and X'ray quality. Crack resistance is excellent due to the extremely low diffusible
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Welding Position		AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
L-74SOrangeRedZ 3211 E6916-G $\stackrel{\leftrightarrow}{\propto} A5.5$ E10016-GSigma Sigma	L-62	Pink	White			4.0 5.0	resistance to moisture absorption. Weldability in all positions, mechanical properties and X-ray quality are excellent. Extremely low diffusible hydrogen content in weld metal assures satisfac
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Welding	Welding Position		F/1G	HF/2F	H/2G OH/4G VU/3G
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L-74S	Orange	Red			4.0	resistance to moisture absorption and suitable for all position welding of 685MPa. Weldability and X-ray properties are excellent and extremely low diffusible hydrogen content of weld metal assures excellent crack resistance and mechanical proper-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Welding	Position	AWS/ASME F/1G		HF/2F	H/2G OH/4G VU/3G
L-100EL Orange Orange $\begin{pmatrix} 4.0\\ 5.0 \end{pmatrix}$ Ultra low hydrogen type electrode with high resistance to moisture absorption and suitable for all position welding of 950MPa high tensile strength steel. Weldability and X-ray properties are excellent and extremely low diffusible hydrogen content of weld metal assures excellent crack resistance and mechanical properties.	L-80EL	Red	Pink	E7816-			tance to moisture absorption. It is suitable for weld- ing under severe conditions such as site welding of penstocks and tanks since extremely low diffusible hydrogen content in weld metal assures excellent
L-100EL Orange Orange 4.0 L-100EL Orange Orange 5.0 resistance to moisture absorption and suitable for all position welding of 950MPa high tensile strength steel. Weldability and X-ray properties are excellent and extremely low diffusible hydro- gen content of weld metal assures excellent crack resistance and mechanical properties.		Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
Welding Position AWS/ASME F/1G HF/2F H/2G OH/4G VU/3G	L-100EL	Orange	Orange	_	_		resistance to moisture absorption and suitable for all position welding of 950MPa high tensile strength steel. Weldability and X-ray properties are excellent and extremely low diffusible hydro- gen content of weld metal assures excellent crack
		Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Ту			cal Con Metal (npositi %)	on	Ту	pical Mechanical of Weld Me		ies	Diffusible Hydrogen (Gas
С	Si	Mn	Ni	Cr	Mo	Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	Charpy 2V-notch, J , 0°C	Chromatog- raphy) ml /100g
0.05	0.46	1.12	1.51	_	0.20	580	650	27	-45°C 120	_
0.07	0.48	1.39	0.76	_	0.35	600	670	29	-20°C 170	_
0.05	0.37	1.01	3.28	0.23	0.34	780	840	22	-29°C 100	_
0.06	0.45	1.44	2.44	0.20	0.42	740	820	22	-20°C 120	1.4
0.06	0.25	1.67	2.01	0.89	0.75	910	990	19	−25°C 70	1.7

WELDREAM["]

SMAW

NF-820 × Y-DM

*JIS Z 3183 S582-H *AWS A5.23 F8A0-EA3-A3

For 590MPa High Tensile Strength Steel

APPLICATIONS

2

Fillet welding of 590MPa high tensile strength steel for steel frames, bridges, pressure vessels and storage tanks.

CHARACTERISTICS

Bead appearance and slag removal are excellent in flat and horizontal fillet welding with single or double electrodes. NF-820 is a pumiceous flux and is economical due to its low consumption rate.

GUIDELINES FOR USAGE

Care should be taken to keep the flux from absorbing moisture.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Mo	Base Metal	Plate Thickness mm	Welding Method
0.05	0.67	1.86	0.014	0.012	0.51	WT590	25	Multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

r	Tensile Test	Charpy 2	2 V-notch, J	Base	Plate	Welding	
Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	-20°C	-20°C -5°C		Thickness mm	Method
600	670	26	58	65	WT590	25	Multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
	(L)4.8			800	27		
19			1st & 2nd	750	28	60	one pass both sides

NB-60L × Y-DM3

*AWS A5.23 F8A8-EG-G F8P8-EG-G

For 590MPa High Tensile Strength Steel

APPLICATIONS

Multi-layer butt welding of aluminium-killed steel for low temperature service for offshore structures, installations for low temperatures service and structures to be used in frigid areas.

CHARACTERISTICS

 $\rm NB\text{-}60L$ is a Ti-B type bonded flux and assures excellent low temperature toughness and CTOD both as welded and after stress relief annealing.

GUIDELINES FOR USAGE

- 1. Satisfactory weldability and weld metal properties are obtained with heat input of less than 50kJ/cm.
- 2. Flux should be used as fast as possible after taking out of the can. Flux should be redried at 250~350°C for 60 minutes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Mo	Base Metal	Plate Thickness mm	Welding Method
0.08	0.18	1.54	0.010	0.005	0.18	YP420	25	X groove, multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

7	fensile Test		Charpy 2 V-notch,			Plate	
Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	J -60°C	PWHT	Base Metal	Thick- ness mm	Welding Method
560	640	32	140	As-welded	YP420	25	X groove,
500	610	30	180	600°C×1.5hr	11420	20	multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

	Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
-	75	4.8	75 70° 38 5 5 32	$\begin{array}{c} 1 \\ 2 \sim 13 \\ 14 \\ 15 \sim 29 \end{array}$	600 700 600 700	27 32 28 32	30 30 30 30	Multi-layer, with back gouging
	25	4.8		1~11	700	30	30	Multi-layer

SAW

2

ELDREAM

YF-15B × Y-DM

*JIS 7 3183 S624-H4 *AWS A5.23 F9A6-EA3-A3 F8P2-EA3-A3

For 590MPa High Tensile Strength Steel

APPLICATIONS

Single and multi-layer welding of 590MPa high tensile strength steel for ships. steel frames, bridges and pressure vessels.

CHARACTERISTICS

Weld metal shows excellent impact values and sufficient strength and toughness as welded and after stress relieving annealing.

GUIDELINES FOR USAGE

An excessive amount of flux in high current welding may cause uneven bead ripples.

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Mo	Base Metal	Plate Thickness mm	Welding Method
0.09	0.38	1.62	0.014	0.011	0.49	WT590	25	Multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

,	Tensile Test	Charpy 2	2 V-notch, J	D	Plate	Wolding	
Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	-40°C	0°C	Base Metal	Thickness mm	Welding Method
540	630	25	41	69	WT590	25	Multi-layer

TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
25	4.0		1~14	550	30	41	Multi-layer

NB-250H × **Y-204B** *AWS A5.23 F9A8-EG-G F9P8-EG-G

For 590MPa Low Temperature Service

APPLICATIONS

Flat butt welding of 590MPa high tensile strength steel for low temperature service for offshore structures and structures to be used in frigid areas.

CHARACTERISTICS

NB-250H is a high basic type bonded flux and assures excellent low temperature toughness (impact and CTOD properties) both as welded and after stress relieving annealing. Slag is easy to remove even in narrow grooves.

GUIDELINES FOR USAGE

- 1. Satisfactory weldability and mechanical properties are obtained with heat input of less than 45kJ/cm.
- 2. Flux should be used as fast as possible after taking out of the can. Damp flux should be redried at $250 \sim 350^{\circ}$ C for 60 minutes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Ni	Mo	Base Metal	Plate Thickness mm	Welding Method
0.10	0.20	1.71	0.011	0.003	0.74	0.29	HT590	50	X groove, multi-layer

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Те	nsile Test		Charpy 2	2 V-notch, J	CTOD mm			Plate	
Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	-60°C	-40°C	−10°C	PWHT	Base Metal	Thickness	Welding Method
610	710	29	150	170	2.06	As- welded	HT590	50	X groove, multi-layer
590	680	30	110	140	2.99	605°C ×2.5hr	HT590	50	X groove, multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
		50° 1~7	1	600	28	30	Multi-layer
50	4.8		2~7	650	30	28	with
50	4.0		8	600	28	30	gouging
		8~15	9~15	650	30	28	Sousing

VELDREAM

NB-250H × Y-80M

*JIS Z 3183 S804-H4 *AWS A5.23 F11A10-EG-M3

For 780MPa High Tensile Strength Steel

APPLICATIONS

NELDREAM

92

Welding of 780MPa high tensile strength steel for offshore structures, pressure vessels, penstocks and bridges.

CHARACTERISTICS

NB-250H is a bonded flux designed to minimize the diffusible hydrogen content in weld metal and, therefore, crack resistance is extremely high. Impact properties are excellent at low temperature and slag is easy to remove even in narrow grooves.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 250~350°C for 60~120 minutes before use.
- 2. When flux is reused, care should be taken that alien things such as rust are not mixed in with the flux.
- 3. Preheating at 100~150°C is required.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Cr	Mo	Base Metal	Plate Thickness mm	Welding Method
0.07	0.19	1.41	2.18	0.56	0.52	WT780	25	Multi-layer

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Joint	Tensile Te	st	Charpy 2	2 V-notch, J		Plate	Heat	XX7 1 1·
Yield Strength, MPa	Tensile Strength, MPa	Elong- ation, %	-60°C	-40°C	Base Metal	Thickness mm	Input kJ/cm	Welding Method
730	830	29	86	120	WT780	25	31	Multi-layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
25	4.0		1~9	550	31	30	Multi-layer

NB-250J × Y-80J

*JIS Z 3183 S804-H4 *AWS A5.23 F11A10-EG-G

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of 780MPa high tensile strength steel for offshore structures, pressure vessels, penstocks and bridges.

CHARACTERISTICS

NB-250J is a bonded flux designed to minimize the diffusible hydrogen content in weld metal and, therefore, crack resistance is extremely high. Impact properties are excellent at low temperature and slag is easy to remove even in narrow grooves.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 250~350°C for 60~120 minutes before use.
- 2. When flux is reused, care should be taken that alien things such as rust are not mixed in with the flux.
- 3. Preheating at 100~150°C is required.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

C	c;	Mn	Ni	Cr	Mo	Base	Plate Thickness	Welding Method
U	51	WIII	INI	Or	INIO	Metal	mm	weiding wiethod
0.08	0.20	1.43	2.17	0.56	0.52	WT780	25	Multi-layer

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Jo	int Tensile T	est	Charpy 2	2 V-notch, J		Plate	Heat	Welding
Yield Streng MPa	th, Strength,	Elong- ation, %	-60°C	-40°C	Base Metal	Thickness mm	Input kJ/cm	Method
759	859	24	64	103	WT780	25	34	Multi-layer

TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
25	4.0		1~8	600	28	30	Multi-layer

SAW

NB-80 × Y-80

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of 780MPa high tensile strength steel for offshore structures, pressure vessels, penstocks and bridges.

Welding of 3Ni-1.75%Cr-0.5%Mo steel such as ASTM A508 Gr.4N and A543 type B Cl.1 steel.

CHARACTERISTICS

NB-80 is a bonded flux designed to minimize the diffusible hydrogen content in weld metal and, therefore, crack resistance is extremely high. Impact properties are excellent at low temperature and slag is easy to remove even in narrow grooves.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 300~350°C for 60~120 minutes before use.
- 2. When flux is reused, care should be taken that alien things such as rust are not mixed in with the flux.
- 3. Preheating at 100~150°C is required.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Cr	Mo	Base Metal	Plate Thickness mm	Welding Method
0.07	0.20	1.62	2.13	0.94	0.45	WT780	25	Multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Joint	Joint Tensile Test Charpy 2 V-notch, J		eh,	Base Thick-		Heat	Welding				
Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	-40°C	−20°C	−29°C	0°C	Metal	Thick- ness mm	Input kJ/cm	Method	PWHT
790	890	21	87	110	-	130	HT780	25	31	Multi- layer	As- welded
690	800	24	-	-	103	145	A508Gr.411	25	28	Multi- layer	585°C ×20h

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
25	4.0		1~9	550	31	30	Multi-layer

SAW

2

2

NELDREAM

Submerged Arc Welding Materials for 590~780MPa High Tensile Strength Steel

Brand	Specification				Typical Chemical of Weld				
Name	JIS	AWS	Application and Characteristics		Si	Mn	Р	s	
NF-250 × Y-204B	_	☆ A5.23 F9A6-EG-G F8P6-EG-G	Narrow gap welding of 590MPa low temperature service steel for nuclear reactor pressure ves- sels and structures to be used in frigid areas. Slag is extremely easy to remove and weld metal shows excellent impact value.	0.07	0.14	1.60	0.010	0.004	
	Weldi	ng Position	AWS/ASME F/1G	1					

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Compo Metal			Typical Mechanical Properties of Weld Metal					Remarks			
Ni	Cr	Mo	Yield Strength, MPa	Tensile Strength, MPa	Elon [.] gation, %	Charp	y 2 V-notch, J	PWHT	Base Metal	Plate Thick- ness mm	Welding Method
0.04		0.00	_	660	28	-50	91	As welded		10	Single, one
0.94	_	0.38	_	640	29	-50	64	625°C× 1hr	SPV490	40	pass one layer multi-layer

• 96

SAW

YM-60C

JIS Z 3312 G59JA1UC3M1T

*AWS A5.28 ER80S-G

For 590MPa High Tensile Strength Steel

APPLICATIONS

GMAW

2

Welding of 590 MPa high tensile strength steel for steel frames, bridges, pressure vessels and penstocks.

CHARACTERISTICS

YM-60C is a gas metal arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and weldability is excellent even in high welding current range. High efficiency is obtained in automatic and semi-automatic welding due to high deposition rate and deep penetration. It is also applicable to OSCON process, our manpower saving automatic welding process.

GUIDELINES FOR USAGE

1. Preheating at $50{\sim}150{}^{\circ}\mathrm{C}$ is required in accordance with plate thickness, restraint, heat input, etc.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	C	Si	Mn	Р	S	Mo
CO_2	0.07	0.38	1.38	0.011	0.012	0.35

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Yield Strength, MPa MPa		Charpy 2V-notch, J		
IVII a	IVII a	%	−20°C	−5°C	
590	660	28	110	120	

TYPICAL WELD JOINT TEST

Joint Tensile Test		Charpy 2	2V-notch, J		Plate	*** 11.	
Tensile Strength, MPa	Location of Fracture	−20°C	−5°C	Base metal	Thickness mm	Welding Method	
640	Base metal	60	80	590MPa high tensile strength steel	25	X groove, 3 passes both sides	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

er (mm)	1.2	1.4	1.6						
F, H-Fil	80~350	$150 \sim 450$	$250 \sim 550$						
Н	100~300	$150 \sim 350$	-						
	er (mm)	er (mm) 1.2 F, H-Fil 80~350	F, H-Fil 80~350 150~450						

JIS Z 3312 G59JA1UM3M1T *AWS A5.28 ER80S-G

For 590MPa High Tensile Strength Steel

APPLICATIONS

Welding of 590MPa high tensile strength steel for steel frames, bridges, pressure vessels, storage tanks and penstocks.

CHARACTERISTICS

YM-60A is a gas metal arc welding wire to be used with Ar+5~25%CO₂ or Ar+2~5%O₂ shield gas. It is suitable for spray arc welding with high current and vertical butt welding with low current and high heat input. Weld metal shows excellent mechanical properties and crack resistance. Weldability is satisfactory and bead appearance is beautiful when it is used for OSCON Process, our manpower saving automatic welding process.

GUIDELINES FOR USAGE

1. Preheating at $50 \sim 150^{\circ}$ C is required in accordance with plate thickness, restraint, heat input, etc.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Mo
$Ar+20\%CO_2$	0.06	0.35	1.45	0.008	0.003	0.38

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2	PWHT	
MPa	MPa	%	-30°C	−5°C	PWHI
580	650	28	180	200	As welded
560	630	28	−40°C: 100	−0°C: 210	620°C×3hr
530	600	30	−40°C: 190	−0°C: 230	620°C×15hr

TYPICAL WELD JOINT TEST

Joint Te	nsile Test	Charpy 2V-notch,		11		Plate Thick-		
Tensile	Location of	و	J	weld- ing Position	Base metal	ness	PWHT	
Strength, MPa	Fracture	−30°C	−10°C	ing i osition		mm		
660	Base Metal	150	190	F	590MPa high tensile	25	As welded	
670	Base Metal	140	180	V	strength steel			

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

				1
Diamet	er (mm)	1.2	1.4	1.6
Current (A)	F	80~350	$150 \sim 450$	$200 \sim 550$
	H-Fil	80~350	150~400	200~450

98

GMAW

*AWS A5.28 ER90S-G

For 690MPa High Tensile Strength Steel

APPLICATIONS

GMAW

2

Welding of 690MPa high tensile strength steel for steel flames, bridges, pressure vessels, penstocks and offshore structures down to -40° C, 80%Ar+20%CO₂ shielding gas.

CHARACTERISTICS

YM-80S is a gas metal arc welding wire to be used with argon rich shielding gas such as Ar+5~25%CO₂ or Ar+2-5%O₂.

Arc is stable, spatters are few and weldability is excellent in a wide current range. Bead appearance is beautiful and weld metal shows excellent toughness at low temperature.

GUIDELINES FOR USAGE

- 1. All dust and rust in groove should be completely removed
- 2. Preheating at 100~180°C is required in accordance with plate thickness. restraint, heat input ,etc.

WELDING POSITION

JIS Z 3312 G69A2UCN1M2T *AWS A5.28 ER100S-G

For 690MPa High Tensile Strength Steel

APPLICATIONS

Welding of 690MPa high strength steel for civil construction equipment, steel frames, bridge and pressure vessels.

CHARACTERISTICS

YM-70CS is a gas metal arc welding wire to be used with CO_2 gas. Arc is stable, spatters are few and weldability is excellent even in high welding current range. High deposition rate and deep penetration enable highly efficient welding.

GUIDELINES FOR USAGE

1. Preheating at 80~150°C is required in accordance with plate thickness, restraint, heat input .etc.

WELDING POSITION

AWS/ASME

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

S	bield Gas	C	Si	Mn	P	S	Ni	Mo
А	$r+20\%CO_2$	0.09	0.64	1.82	0.011	0.004	0.61	0.36

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL (Shielding gas: Ar+20%CO₂)

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J -40°C
722	799	24	136

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diamet	1.2	
Current (A)	F, H	80~350
	H-Fil	80~350
	V-up, OH	80~110

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni	Mo
$\rm CO_2$	0.08	0.53	1.58	0.010	0.008	0.52	0.34

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J		
MFa	IVIT a	70	−20°C	−5°C	
650	740	22	80	90	

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4	1.6
Current (A)	F, H	$100 \sim 350$	$150 \sim 450$	$200 \sim 550$
Current (A)	H-Fil	$100 \sim 350$	$150 \sim 450$	200~350

GMAW

2

VELDREAM

YM-80C

JIS Z 3312 G78A2UCN5M3T

*AWS A5.28 ER110S-G

For 780MPa High Tensile Strength Steel

APPLICATIONS

2

WELDREAM

102

Welding of 780 MPa high tensile strength steel for steel frames, bridges, pressure vessels and penstocks.

CHARACTERISTICS

YM-80C is a gas metal arc welding wire to be used with CO_2 shield gas. Arc is stable, spatters are few and weldability is satisfactory even in high welding current range. Bead appearance is beautiful and weld metal shows excellent toughness.

GUIDELINES FOR USAGE

1. Preheating at 120~180°C is required in accordance with plate thickness, restraint. heat input etc.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni	Mo
CO_2	0.07	0.60	1.34	0.005	0.009	2.28	0.42

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J		
WII a	IVIT a	70	−20°C	−0°C	
720	850	21	70	80	

■ TYPICAL WELD JOINT TEST

Joint Ter	nsile Test	Charpy 2	2V-notch, J	V-notch,			
Tensile Strength, MPa	Location of Fracture	−15°C	0°C	Base metal	Thick- ness mm	Welding Method	PWHT
830	Base metal	70	80	WEL-TEN™	48	v	As Weldes
840	Base metal	60	60	780°C	40	X groove	625°Cx1hr

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		0.9	1.0	1.2	1.4	1.6
Current (A)	F, H-Fil	60~200	$70 \sim 250$	80~350	$150 \sim 450$	$250 \sim 550$

*AWS A5.28 ER110S-G

For 780 MPa High Tensile Strength Steel

APPLICATIONS

Welding with Ar+CO $_{^2}$ mixture gas for 780 MPa high tensile strength for steel frames, bridges, penstoch, offshore

CHARACTERISTICS

YM-80A is a gas metal arc welding wire to be used with $Ar+10\sim25\%$ CO₂ mixtures.

This wire is available to low temperature operation up to $-40^{\circ}\mathrm{C}$ under both as welded and PWHT conditions.

It can be used with confidence for welding extremely thick plates such as Rack & Chord in offshore structures

since extremely low diffusible hydrogen content in deposited metal assures satisfactory crack resistance.

GUIDELINES FOR USAGE

- 1. Preheating is necessary according to plate thickness and its chemical composition and so on.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and pits.
- 3. In case PWHT is carried out, recommended holding temperature for PWHT is approximately 580°C.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni	Cr	Mo
$Ar+20\%CO_2$	0.07	0.28	1.36	0.006	0.003	2.87	0.47	0.29

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Shielding gas	Welding	input	Yield Strength,	Tensile Strength,	Elon- gation,	2V-no	, 	PWHT
guo position	kJ/cm	MPa	MPa	%	−40°C	−29°C		
	F/1G	25	760	870	22	72	—	As welded
Ar+20%CO ₂	VU/ 3G	40	700	890	22	74	110	As welded
Ar+20%002	F/1G	20	760	830	25	67	—	580°C×8hrs.
	1,10	20	740	810	25	100	—	600°C×8hrs.

■ SIZES & RECOMMENDED CURRENT <DC(+)>

Diar	neter (mm)	1.2	1.4	1.6
Current	F/1G, HF/2F	$70 \sim 250$	$200 \sim 350$	300~500
Range	H/2G, VU/3G	$70 \sim 150$	$100 \sim 250$	-
(A)	OH/4G, VD/3G	70~150	100~200	-

GMAW

Gas Metal Arc Welding Wires for 590~980MPa High Tensile Strength Steel

Brand	Ch:-14	Specification		Dia.	
Name			mm	Application and Characteristics	
YM-70C	CO_2	Z 3312 G69A2UCN4M3T	☆ A5.28 ER100S•G	$0.9 \\ 1.0 \\ 1.2 \\ 1.6$	Welding of 690MPa high tensile strength steel. Good weldability with stable arc and few spatters and excellent toughness are as- sured even in high current welding.
	Wel	ding Position	AWS/ASME	F/10	G HF/2F
YM-70A*	Ar + 20% CO ₂	Z 3312 G69A3UMN4M3T	☆ A5.28 ER100S-G	0.9 1.2 1.6	Welding of 690MPa high tensile strength steel. Arc is stable, spatters are extremely few, and beautiful bead appearance and excellent toughness are obtained in a wide current range with $Ar+20\%CO_2$ or $Ar+O_2$ mixture gas.
	Wel	ding Position	AWS/ASME	F/10	G HF/2F

Note : *Mechanical properties are with Ar+CO₂ mixture gas. Figure of illustration relating to the symbol of welding position in the table mentioned above.

Typical Chemical Composition of Weld Metal (%)				Typical Mechanical Properties of Weld Metal			s of Weld		Type of			
С	Si	Mn	Р	s	Ni	Mo	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Charpy 2V-notch at 0°C, J	PWHT	Cur- rent
0.06	0.49	1.02	0.009	0.006	1.23	0.30	610	720	23	130		DC
0.00	0.45	1.02	0.005	0.008	1.20	0.30	010	720	23 -20°C 100			(+)
0.06	0.47	1 99	0.010	0.005	1.09	0.44		740	99	-20°C 130		DC
0.06	6 0.47 1.32 0.010 0.005 1.92 0.44	660	740 23 -	-40°C 90		(+)						

104

GMAW

2

GMAW

YT-60

*JIS Z 3316 W59AP2U34M3 *AWS A5.28 ER80S-G

For Mild Steel and 590MPa High Tensile Strength Steel

APPLICATIONS

GTAW

2

ELDREAM

≥

106

Gas Tungsten Arc Welding of mild steel, 590MPa high tensile strength steel plates. It is also suitable for uranami (Sound penetration bead) welding with back shielding.

CHARACTERISTICS

 $\rm YT{\-}60$ is filler rods and spool wire for GTAW (TIG welding) to be used with Ar shield gas.

The weld metal shows stable toughness at low temperature range down to -40° C. The weld bead shape is excellent since high fluidity of molten pool and high affinity between molten pool and base metal. It is also suitable for uranami (sound penetration bead) welding.

The operability is good since the surface of the filler rod is smooth.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

				<u> </u>	
С	Si	Mn	Р	S	Mo
0.09	0.10	1.79	0.010	0.007	0.42

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2	V-notch, J	PWHT
MPa	MPa	%	-40°C	−20°C	I WIII
560	650	24	120	280	As weld
570	650	28	250	280	610°C×1hr

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)	1000	1000	1000	1000	1000
Weight of spool wire (kg)	12.5, 20	12.5	—	—	—

Identification color: Gold

YT-70

*JIS Z 3316 W69AP2UN4M3T *AWS A5.28 ER100S-G

For 690MPa High Tensile Strength Steel

APPLICATIONS

Gas Tungsten Arc Welding of 690MPa and 100ksi high tensile strength steel for offshore structures, pressure vessels, tanks, penstocks, turbine casings, crane and construction machineries. It is also suitable for uranami (Sound penetration bead) welding with back shielding.

CHARACTERISTICS

YT-70 is filler rods and spool wire for GTAW (TIG welding) to be used with Ar shield gas.

The weld metal shows stable toughness at low temperature range down to -20° C. The weld bead shape is excellent since high fluidity of molten pool and high affinity between molten pool and base metal. It also suitable for uranami (sound penetration bead) welding.

The operability is good since the surface of the filler rod is smooth.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. Preheating at 120~180°C is required in accordance with plate thickness, restraint and heat input etc.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Mo
0.09	0.45	1.43	1.80	0.43

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J -20°C	PWHT
713	792	25	283	As weld
695	755	28	265	610°C×1hr

■ SIZES<AC or DC(-)>

Diameter (mm)	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)	1000	1000	1000	1000	1000
Weight of spool wire (kg)	12.5, 20	_	_	_	_

Identification color: End-pink

107

For 780MPa High Tensile Strength Steel

APPLICATIONS

Gas Tungsten Arc Welding of 780MPa and 110ksi high tensile strength steel (WEL-TEN™ 780, 780C and 780E etc.) of down to -20°C for offshore structures, pressure vessels, tanks, penstocks, turbine casings, crane and construction machineries. It is also suitable for uranami (Sound penetration bead) welding with back shielding.

CHARACTERISTICS

YT-80A is filler rods and spool wire for GTAW (TIG welding) to be used with Ar shield gas.

The weld metal shows stable toughness at low temperature range down to -20°C. The weld bead shape is excellent since high fluidity of molten pool and high affinity between molten pool and base metal. It also suitable for uranami (sound penetration bead) welding. The operability is good since the surface of the filler rod is smooth.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. Preheating at 120~180°C is required in accordance with plate thickness, restraint and heat input etc.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Ni	Mo	Cr
0.06	0.43	1.49	2.80	0.59	0.51

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch, J	PWHT	
MPa	MPa	%	-20°C	F W II I	
760	840	28	98	As weld	

■ SIZES<AC or DC(+)>

Diameter (mm)	1.2	1.6	2.0	2.4
Length of Filler Rod (mm)	1000	1000	1000	1000
Weight of spool wire (kg)	12.5, 20	—	—	—

Identification color: End-purple

Low Temperature Service Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

SF-36F

JIS Z 3313 T496T1-0CA-N1-H5 *AWS A5.29 E70T1-GC-H4

For Low Temperature Service Steel

APPLICATIONS

FCAW

3

WELDREAM

Flat and horizontal fillet welding of low-temperature steels to be used for marine structures, shipbuildings, LPG vessels, and others.

CHARACTERISTICS

SF-36F is a rutile-based seamless flux cored wire dedicated to flat fillet welding and horizontal fillet welding that enables stable toughness to be obtained over a low-temperature range down to around -60° C. It gives excellent porosity resistance in the fillet welding of inorganic zinc primer coated steel plates.

GUIDELINES FOR USAGE

- 1. It is appropriate to hold the torch for horizontal fillet welding at an angle of 40 $^\circ$ 50° to the lower plate and with an advance angle of about 5 $^\circ$ 20°.
- 2. Depending on the type or film pressure of the primer, good porosity resistance may not be obtained, and therefore it is required that the type and film pressure of the primer should be managed.
- 3. For more information, refer to the essential points of welding operations 1 3 (page 20) with the SF-1.

WELDING POSITION

CHEMICAL	COMPOSITION	OF WELD	METAL(%) <shield gas:co<sub="">2></shield>	
CHEMICAL	COMPOSITION	OI WILLD	MILIAL /0/Silleiu Gus.CO2/	

С	Si	Mn	Р	S	Ni
0.05	0.48	1.33	0.016	0.006	0.52

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch,
MPa	MPa	%	(-60°C) J
550	580	27	68

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	1.4	1.6		
Current	H-Fil	$180 \sim 320$	200~380	$220 \sim 430$		
А	F-Fil	$180 \sim 320$	200~380	220~430		

SF-36E

JIS Z 3313 T496T1-1CA-N3-H5 *AWS A5.29 E81T1-K2C-H4

For Low Temperature Service Steel

APPLICATIONS

Welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG ships.

CHARACTERISTICS

SF-36E is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas. Weld metal shows stable toughness at low temperature range down to -60°C. Arc is stable and bead appearance and shape are excellent in all positions. Diffusible hydrogen content is as low as solid wires and crack resistance is excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni
CO_2	0.05	0.43	1.29	0.010	0.003	1.31

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	0,		Charpy 2V-notch, J	
MPa	MPa	%	-60°C	-40°C
570	610	28	76	112

■ TYPICAL WELD JOINT TEST

	Plate		Joint Tensile Test		Charpy 2	2V-notch,
Base metal	Thickness	Shield	Tensile	Location		J
Base metal	mm	Gas	Strength, MPa	of Fracture	−60°C	-40°C
Low temperature service steel, YP410 MPa	50	CO_2	620	Base metal	60	104

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	1.4
	F, H	180~300	200~400
Current	OH	180~250	200~280
А	H-Fil	180~300	200~400
	V-up	180~250	200~280

NELDREA

SF-3AM

*AWS A5.29 E81T1-Ni1M-H4

For Low Temperature Service Steel

APPLICATIONS

FCAW

3

Seamless flux cored wire for Ar+CO₂ gas shielded arc welding of low temperature service steel for offshore structures, etc.

CHARACTERISTICS

SF-3AM is a rutile type seamless flux cored arc welding wire with $Ar+20\%CO_2$ shielding gas. It assures excellent impact toughness at low temperatures down to -40°C. It has also good usability in all position welding.

Moreover, due to its seamless surface, it provides various advantages better than conventional open-seam flux cored wires.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Shield Gas	С	Si	Mn	Р	S	Ni
$Ar+20\%CO_2$	0.05	0.33	1.28	0.010	0.003	0.89

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J -60°C
550	610	27	95

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)		1.2	1.4
	F, H	180~300	200~400
Current	OH	$180 \sim 250$	200~280
А	H-Fil	180~300	200~400
	V-up	$180 \sim 250$	200~280

SF-3AMSR

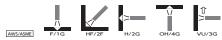
*AWS A5.29 E71T1-GM-H4

For Low Temperature Service Steel

APPLICATIONS

All position welding for YS420 down to -40°C, Ar+20%CO, shielding gas

CHARACTERISTICS


SF-3AMSR is new type of seamless flux cored wire for low temperature service steel under SR, in using mixed Ar+CO₂ shielding gas.

Weld metal shows excellent toughness in low temperature range down to-40°C. Crack resistance and weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness. Arc voltage should be 1 or 2 volt lower than that for conventinal flux cored wires and 4 or 5 volt lower than that for solid wires.
- 2. A suitable shield gas flow rate is 20~25 l /min.
- 3. Distance between base metal and tip should be kept within 20-30mm.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni
0.04	0.28	1.24	0.009	0.004	0.80

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

PWHT	Yield Strength MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -40°C, J
As welded	505	559	27	137
585°C×2.5hr	476	555	28	123

TYPICAL WELD JOINT TEST RESULT

Steel	Heat input kJ/cm	PWHT	Yield Strength MPa	Tensile Strength MPa	Charpy 2V-notch at –40°C, J	CTOD mm, at -10°C
EH40	505	As welded	515	587	110	0.37, 0.43
(T=50mm)	(Vertical-up)	585°C×2.5hr	489	579	84	0.55, 0.54

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	
C I	F, H	180~300
Current	H-Fil	180~300
	V-up, OH	180~250

VELDREAM

VELDREAM

*AWS A5.29 E81T1-Ni1C-JH4

For Low Temperature Service Steel

APPLICATIONS

FCAW

3

VELDREAM

All position welding for YS460 down to -60°C, 100%CO₂ shielding gas

CHARACTERISTICS

SF-47E is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas and designed for shipbuilding and offshore structure welding. Weld metal shows excellent toughness in low temperature range down to -60°C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

AND (ACME)	Ā				Û >
AWS/ASME	F/1G	HF/2F	H/2G	OH/4G	VU/3G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni
0.05	0.46	1.31	0.012	0.004	0.96

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -60°C, J
545	600	28	70

TYPICAL WELD JOINT TEST

Base metal	Plate thickness mm	Welding position	Heat input kJ/cm	Yield Strength MPa	Tensile Strength MPa	Charpy 2V-notch at -60°C, J
YS400	100	Vertical-up	22	575	640	65

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	
9	F, H	180~300
Current	H-Fil	180~300
71	V-up, OH	180~260

SM-47A

*AWS A5.28 E80C-Ni1-H4

For Low Temperature Service Steel

APPLICATIONS

Flat and horizontal welding for YS460 down to -60°C, mixed Ar+CO₂ shielding gas

CHARACTERISTICS

SM-47A is a metal powder type seamless flux cored wire which is used in all position for shipbuilding and offshore structure welding. It has been designed of root pass in all position in the short-circuit arc range, and flat position, horizontal position and fillet welds in the spray arc range. Diffusible hydrogen content is as low as solid wire and crack resistance is excellent. The generated slag and spatters are low.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. Enough care should be taken for gas shielding.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Cu	Ni
0.07	0.62	1.38	0.013	0.009	0.19	0.92

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Charpy 2	V-notch, J	Diffusible hydrogen		
Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	−60°C	-40°C	content, mL/100g
539	627	26	85	112	3.2

■ TYPICAL WELD JOINT TEST

_	Base metal		Heat Typical mechanical properties of wel				weld met	al (Root side)	
	(Plate Position	Groove geometry	input	Yield	Tensile	Elongation	Charpy 2 V-notch, J		
	thickness)	1 OSILIOII	geometry	kJ/cm	Strength, MPa	Strength, MPa	%	−60°C	-40°C
	YS420 (60mm)	Flat	45°K Root: 38mm Cap: 20mm	16.2	584	660	29	115	134
-	D 1	. 1	ï		Typical CTOD				
	Base metal (Plate	Welding	Groove	input					
	thickness)	Position	geometry		input Test ter kJ/cm °C	-		Fra	icture mode
_	tinekiie35			Rovem	-0		mm		
	YS420		45°K				0.94		m
	(60mm)	Flat	Root: 38mm	16.2	-10		0.91		m
_	(ounin)	Cap: 20m	Cap: 20mm	ap: 20mm			0.95		m

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

	Diameter (mm)		1.2	1.4	
	Current	F, H	180~300	220~350	
	А	H-Fil	180~300	220~350	

*AWS A5.29 E91T1-Ni2C-JH4

For Low Temperature Service Steel

APPLICATIONS

FCAW

3

All position welding for YS500 down to -60°C, 100%CO₂ shielding gas

CHARACTERISTICS

SF-50E is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas and designed for offshore structure welding. Weld metal shows excellent toughness in low temperature range down to -60°C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

	Λ			V	Û >
AWS/ASME	F/1G	HF/2F	H/2G	OH/4G	VU/3G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (mass%)

С	Si	Mn	Р	S	Ni
0.04	0.25	1.21	0.012	0.003	2.30

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength MPa	0		Charpy 2V-notch at -60°C, J
563	626	25	85

TYPICAL WELD JOINT TEST RESULT

Base metal	Plate thickness mm	Welding position	Heat input kJ/cm	Yield Strength MPa	Tensile Strength MPa	Charpy 2V-notch at -60°C, J
YS420	100	Vertical-up	20	661	702	96

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	
0	F, H	180~300
Current	H-Fil	180~300
А	V-up, OH	180~260

*AWS A5.29 E91T1-K2M-H4

For Low Temperature Service Steel

APPLICATIONS

All position welding for YS500 down to -40°C, Ar+20%CO₂ shielding gas

CHARACTERISTICS

SF-50A is a rutile type seamless flux cored arc welding wire to be used with $Ar+20\%CO_2$ shield gas and designed for shipbuilding and offshore structure welding. Weld metal shows excellent toughness in low temperature range down to -40°C. Diffusible hydrogen content is as low as solid wire s and crack resistance is excellent. Weldability in all positions are excellent.

GUIDELINES FOR USAGE

- 1. Select optimum welding conditions and control heat input in accordance with welding position, plate thickness and required toughness.
- 2. A suitable shield gas flow rate is $20\sim 25 \ell$ /min.
- 3. For others, see GUIDELINES FOR USAGE 1-4 of SF-1

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni
0.06	0.49	1.21	0.015	0.004	1.68

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -40°C, J
630	680	23	100

TYPICAL WELD JOINT TEST

Base metal	Plate thickness mm	Welding position	Heat input kJ/cm	Yield Strength MPa	Tensile Strength MPa	Charpy 2V-notch at -40°C, J	CTOD mm,at –10°C
YS500	63.5	Vertical-up	20	595	655	98	0.27

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

Diameter (mm)	1.2	
Current A	F, H	180~300
	H-Fil	180~300
	V-up, OH	180~250

ELDREAN

L-55SN

*AWS A5.5 E7016-G

For Aluminium-killed Steel and 490MPa High Tensile Strength Steel

APPLICATIONS

SMAW

3

VELDREAM

118

Welding of ASTM A516 Gr 55~70, classification Society Standard A32, 36, D32, 36, E32, 36, JIS SLA235A, 235B, 325A (N-TUF295N, 325N, 325, 365) steel for ships, pressure vessels, storage tanks and offshore structures.

CHARACTERISTICS

L-55SN is an extra low hydrogen type electrode for all positions of aluminiumkilled steel for low temperature service and 490MPa high tensile strength steel. It is suitable for welding offshore structures and structures to be used in frigid areas since weld metal shows excellent toughness even at -55°C and CTOD (crack tip opening displacement) properties.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- 2. Optimum heat input in accordance with service conditions and plate thickness of structure should be applied in order to obtain desired toughness or CTOD value. Arc length should be kept as short as possible.
- 3. Backstep method should be applied to prevent blowholes and pits at arc starting.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Ti	В
0.07	0.42	1.41	0.012	0.007	0.57	0.02	0.002

TYPICAL MECHANICAL PROPERTIES OF WELD JOINT

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J		
MPa			−60°C	$-40^{\circ}\mathrm{C}$	-30°C
530	580	28	130	140	180

TYPICAL CTOD VALUES OF WELD METAL (AS WELDED)

Base Metal	Groove	Welding Conditions	CTOD Value, (mm)		
(Thickness)	Groove	Welding Conditions	-30°C	-10°C	
BS4360-50D (25mm)		Diameter: 5.0mm	0.33	1.16	
	Y	Position:V-up	1.14	1.11	
		Heat Input: 40kJ/cm	0.53	1.25	

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		3.2	4.0	5.0	
Length (mm)		350	400	400	
Current	F, H-Fil	100~140	140~190	190~240	
Α	V-up, OH	80~120	110~150	150~190	

Identification color: End-yellow, secondary-purple

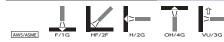
N-12M

*AWS A5.5 E8016-C1

For 610MPa High Tensile Strength Steel

DESCRIPTION

Welding of 610MPa high tensile strength steel (N-TUF490) for low temperature service steel.


APPLICATION

N-12M is a low hydrogen type electrode for all positions. This electrode is used by direct current (DCEP) polarity. Weld metal shows excellent low temperature toughness under post weld heat treatment (PWHT).

PROCEDURE

- 1. Welding is operated in DCEP electrode positive polarity.
- 2. Electrodes should be dried at 350~400°C for 60 minutes before use.
- 3. Preheating in accordance with the type of steel, plate thickness, restraint, etc., i.e. at 50~100°C for a 35mm thick plate, is necessary to prevent cracks.
- 4. Select the optimum heat input in accordance with the required specification of structure and plate thickness to assure desired toughness.
- 5. Arc length should be kept as short as possible during welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

					<u> </u>	
С	Si	Mn	Р	S	Ni	Mo
0.07	0.36	1.15	0.011	0.002	2.59	0.12

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch at -50°C, J	PWHT
579	659	25	161	580°C×4.5h

■ SIZE & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		3.2	3.2 4.0			
Length (mm)		350	400	400		
Current	F / H-fillet	100~140	140~190	$190 \sim 250$		
А	V-up, OH	90~130	120~170	140~190		

Identification color: End greeny, secondary white

SMAW

*AWS A5.5 E8018-G

For Low Temperature Service Steel

DESCRIPTION

Welding of society standard A420, D420, E420, F420, A460, D460, E460, F460 steel for ships and offshore structures.

APPLICATION

L-F80 is an iron powder low hydrogen type electrode containing a large amount of iron powder in coating flux. L-F80 is excellent mechanical properties of deposited metal, crack resistance and X-ray quality. Weldability is good and high welding efficiency is obtained.

PROCEDURE

- 1. Welding is operated in DCEP (electrode positive polarity).
- 2. Electrodes should be redried at 350~400°C for 60 minutes before use.
- 3. Backstep method should be applied to prevent blowholes and pits at arc starting and arclength should be kept as short as possible during welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	
0.06	0.50	1.51	0.013	0.002	0.48	

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2V-notch, J		
1111 0	1111 0	,,,	-60°C		
524	601	27	180		

■ SIZES & RECOMMENDED CURRENT RANGE< DC(+)>

Diameter (mm)		3.2	4.0	
Length (mm)		350	400	
	F	100~140	140~190	
Amp.	V-up,OH	80~120	$110 \sim 150$	
	H-Fil	100~140	140~190	

JIS Z 3211 E4916-N7PUL *AWS A5.5 E7016-C2L

For 3.5%Ni Low Temperature Service Steel

DESCRIPTION

Welding of 3.5%Ni steel such as ASTM A203 Gr. D. E and JIS SL3N for pressure vessels and storage tanks.

APPLICATION

N-13NM is a low hydrogen type electrode for all positions. Weld metal shows excellent low temperature toughness under postweld heat treatment (PWHT)

PROCEDURE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating at 60~100°C is necessary depending on plate thickness. When stress relief annealing is required, keep temperature below 610°C and increase cooling speed as much as possible.
- 3. Backstep method should be applied to prevent blowholes and pits at arc starting and arc length should be kept as short as possible during welding.
- 4. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.
- 5. Keep the proper heat in put to present from the deterioration of mechanical properties.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Mo
0.03	0.24	0.82	0.010	0.008	3.44	0.10

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation,	Charpy 2	2V-notch, J	PWHT	
iiii u	1,11 0		-105°C	−80°C		
430	530	30	98	130	610°C×2h	

■ SIZE & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter (mm)		3.2	4.0	5.0	
Length (mm)		350	400	400	
A	F, H-Fil	90-130	130-180	180-240	
Amp.	V-up,OH	80-120	110-170	—	

Identification color: End-Light green, secondary-Red

SMAW

SMAW

3

120

VELDREAM

Covered Arc Welding Electrodes for Low Temperature Service Steel

Brand	ldentification Color		Specification		Dia.			
Name	End Secon- dary		JIS	AWS	mm	Application and Characteristics		
N-5F	Yellow	Pink	Z 3211 E4928- GAP	_	5.0 5.5 6.0 7.0 8.0	Iron powder low hydrogen type electrode for horizontal and flat fillet welding of aluminium- killed steel for low temperature service. Weld metal shows excellent toughness at -4560° C. Weldability is good and bead is beautiful with equal leg length and without undercuts. It also is suitable for gravity welding.		
	Welding	Position	AWS/ASME	F/1G	HF/2F			
N-11	Green	Dark brown	Z 3211 E5516- 3N3APL	☆ A5.5 E8016-G	3.2 4.0 5.0 6.0	Low hydrogen type electrodes assuring excellent toughness at $-45 \sim -60^{\circ}$ C. N·11 is suitable for all position welding.		
	Welding Position		AWS/ASME F/1G		HF/2F H/2G OH/4G VU/3G			
N-12	Green	Green	Z 3211 E5516- N5APL	☆ A5.5 E8016-C1	3.2 4.0 5.0 6.0	Low hydrogen type electrode for all positions. It is suitable for welding cryogenic LPG tanks since weld metal shows excellent toughness at -50~-60°C.		
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G		
N-13	Green	Orange	Z 3211 E5516- N7L	☆ A5.5 E8016-C2	2.6 3.2 4.0 5.0 6.0	Low hydrogen type electrode for all positions. Weld metal shows excellent toughness even at -60^{-75} °C.		
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G		
N-16	Blue	White	Z 3211 E5516- N13APL	☆ A5.5 E8016-G	2.6 3.2 4.0 5.0	Low hydrogen type electrode for welding 3.5% Ni steel for low temperature service in all positions. Weld metal contains 6.5%Ni and shows excellent toughness at -75 ~ -105° C.		
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G		

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

T	Typical Chemical Composition of Weld Metal (%)					Typical Mechanical Properties of Weld Metal					
С	Si	Mn	Р	s	Ni	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Charpy 2V-notch, J, 0°C		PWHT
0.07	0.19	1.12	0.012	0.007	0.73	480	550	29	-60°C 68		_
0.07	0.49	1.15	0.012	0.005	1.62	540	610	29	-60°C 94	-45°C 130	_
0.06	0.44	1.02	0.015	0.005	2.38	520	600	28	-60°C 110	−50°C 120	_
0.05	0.42	0.46	0.010	0.008	3.35	500	580	29	-75°C 120	-60°C 140	_
0.04	0.17	0.28	0.010	0.005	6.65	600	680	21	-10 11	5°C 10	As- welded
0.04	0.17	0.20	0.010	0.000	0.00	580	640	26	-10 9		600°C ×1hr

SMAW

NB-55 × Y-DS

*AWS A5.17 F7A8-EH14 F7P8-EH14

For Low Temperature Service Steel

APPLICATIONS

SAW

3

VELDREAM

Multi-layer butt welding of aluminium-killed steel for low temperature service for offshore structures, installations for low temperatures service and structures to be used in frigid areas.

CHARACTERISTICS

NB-55 is a Ti-B type bonded flux and assures excellent low temperature toughness and CTOD both as welded and after stress relief annealing.

GUIDELINES FOR USAGE

- 1. Satisfactory weldability and weld metal properties are obtained with heat input of less than 50kJ/cm.
- 2. Flux should be used as fast as possible after taking out of the can. Flux should be redried at $250\sim350$ °C for 60 minutes.

WELDING POSITION

AWS/ASME F/1G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	С	Si	Mn	Р	S	Base Metal	Plate Thickness mm	Welding Method
0	.08	0.20	1.74	0.016	0.001	KE36	50	X groove, multi-layer (POLARITY; ACEP)

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Tensile Test		Ch	arpy 2 V-no	tch,		
Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	-60°C	J -40°C	-29°C	PWHT	
450	560	31	180	210	220	As-welded	
430	520	34	120	147	190	620°C×2hr	

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
100	4.0		1~4 5~16	600 600	30/33 30/33	30 30	Multi-layer, with back gouging

NB-55E × Y-D

*AWS A5.17 F7A8-EH14

for Low Temperature Service Steel

APPLICATIONS

Single-layer welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG storage tanks.

CHARACTERISTICS

Excellent toughness is obtained in multi-layer welding with 30~100 kJ/cm heat input.

GUIDELINES FOR USAGE

Flux should be used as fast as possible after taking out of the can. Flux should be redried at $250\sim350^{\circ}C$ for 60 minutes.

WELDING POSITION

AVA/S/ASAME

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	
0.09	0.18	1.65	0.018	0.007	

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Tensile Te	est	Charpy 2	V-notch,		Plate		
Yield	Tensile	Elongation,		J	Base	Thickness	Welding	
Strength, MPa	Strength, MPa	%	−60°C	−40°C	Metal	mm	Method	
460	560	33	170	200	EH36	32	X groove	

■ TYPICAL GROOVE GEOMETRY AND WELLDING CONDITIONS

Plate Thickness mm	Wire Dia mm	Groove Geometry	Pass	Current A	Voltage V	Speed cm/min	Note
25	(L) 4.8		1	(L) 1000 (T) 900	$\begin{array}{c} 36 \\ 40 \end{array}$	60	One pass both
25	(T) 6.4	90-2	2	(L) 1100 (T) 850	$\begin{array}{c} 36 \\ 40 \end{array}$	55	sides
32	(L) 4.8		1	(L) 1080 (T) 1000	$\begin{array}{c} 36 \\ 40 \end{array}$	45	One pass both
32	(T) 6.4		2	(L) 1250 (T) 1100	$\begin{array}{c} 36 \\ 40 \end{array}$	45	sides

NB-55LS × Y-3NI

*AWS A5.23 F7A10-EG-Ni3

for Low Temperature Service Steel

APPLICATIONS

SAW

3

Multi-layer welding of high-toughness YP360 and YP420 class steel for offshore structures in frigid sea area.

CHARACTERISTICS

It produces Ti-B bearing weld metal having excellent low temperature toughness as impact value at -70°C and CTOD value at -50°C in as welded condition. It provides sufficient resistance for sea water corrosion.

GUIDELINES FOR USAGE

Flux should be used as fast as possible after taking out of the can. Flux should be redried at 250~350°C for 60 minutes.

WELDING POSITION

AWS/ASME

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Mn Ni		В	Plate Thickness mm Method	
0.04	0.10	1.22	2.92	0.03	0.003	25	Multi-layer

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

ſ	Tensile Test		Ch	arpy 2 V-notc J	Plate	Welding	
Yield Strength, MPa	Tensile Strength, MPa	Elonga- tion, %	−90°C	−70°C	−50°C	Thick- ness mm	Method
520	590	29	70	130	160	25	Multi-layer

TYPICAL GROOVE GEOMETRY AND WELLDING CONDITIONS

Plate Thickness mm	Wire Dia mm	Groove Geometry	Pass	Current A	Volt- age V	Speed cm/min	note
25	4.8	20-	1~8	750	33	30	Multi- layer
75	4.8		2~Final	650 (L) 1000 (T) 800	$\begin{array}{c} 28\\ 34\\ 40 \end{array}$	30 40	Multi- layer

NB-55L × Y-D

*AWS A5.23 F7A8-EG-G F7P8-EG-G

For Low Temperature Service Steel

APPLICATIONS

Multi-layer butt welding of aluminium-killed steel for low temperature service for offshore structures, installations for low temperatures service and structures to be used in frigid areas.

CHARACTERISTICS

 $NB\text{-}55\mathrm{L}$ is a Ti-B type bonded flux and assures excellent low temperature toughness and CTOD both as welded and after stress relief annealing.

GUIDELINES FOR USAGE

- 1. Satisfactory weldability and weld metal properties are obtained with heat input of less than 50kJ/cm.
- 2. Flux should be used as fast as possible after taking out of the can. Flux should be redried at 250~350°C for 60 minutes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Base Metal	Plate Thickness mm	Welding Method
0.09	0.20	1.51	0.015	0.007	SM490B	25	Multi-layer

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

1	Tensile Test			V-notch,			Plate	
Yield Strength,	Tensile Strength,	Elonga- tion,		J	PWHT	Base Metal	Thickness	Welding Method
MPa	MPa	%	-60°C	-40°C		Metal		Methou
520	580	34	130	170	As-welded	SM490B	25	Multi-laver
490	570	33	100	150	600°C×1hr	5M490D	20	Munti layer

TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
25	4.8		1~11	700	30	30	Multi-layer

VELDREAM

NB-55E × Y-DM3

*AWS A5.23 F8A4-EG-G

for Low Temperature Service Steel

APPLICATIONS

SAW

3

VELDREAM

Single-layer welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG storage tanks.

CHARACTERISTICS

Single or multi-layer welding of aluminium-killed steel for low temperature service for installations for low temperature service and structures to be used in frigid areas. Excellent toughness of -40° C is obtained in high heat input welding.

GUIDELINES FOR USAGE

Flux should be used as fast as possible after taking out of the can. Flux should be redried at 250~350°C for 60 minutes.

WELDING POSITION

AWS/ASME F/1G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Mo
0.10	0.24	1.63	0.010	0.003	0.09

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

	Tensile Te	st	Charpy 2 V-notch,		Plate	
Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	J -40°C	Base Metal	Thickness	Welding Method
530	650	26	140	EH36	32	One pass both sides

■ TYPICAL GROOVE GEOMETRY AND WELLDING CONDITIONS

Plate Thickness mm	Wire Dia mm	Groove Geometry	Pa	.ss	Current A	Voltage V	Speed cm/min
			1st	1	(L) 1000 (T) 950	34 38	47
				2	(L) 1000 (T) 950	36 33	44
50	(L) 4.8 (T) 4.0	23 9 70 18		3	(L) 1000 (T) 950	36 40	44
			2nd	1	(L) 1250 (T) 1000	$ 34 \\ 33 $	50
				2	(L) 1000 (T) 950	$\begin{array}{c} 38\\ 40 \end{array}$	46

NB-60L × Y-DM3

*AWS A5.23 F8A8-EG-G F8P8-EG-G

For Low Temperature Service Steel

APPLICATIONS

Multi-layer butt welding of aluminium-killed steel for low temperature service for offshore structures, installations for low temperatures service and structures to be used in frigid areas.

CHARACTERISTICS

NB-60L is a Ti-B type bonded flux and assures excellent low temperature toughness and CTOD both as welded and after stress relief annealing.

GUIDELINES FOR USAGE

- 1. Satisfactory weldability and weld metal properties are obtained with heat input of less than 50kJ/cm.
- 2. Flux should be used as fast as possible after taking out of the can. Flux should be redried at 250~350°C for 60 minutes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Mo	Base Metal	Plate Thickness mm	Welding Method
0.08	0.18	1.54	0.010	0.005	0.18	YP420	25	X groove, multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

1	Т	ensile Test		Charpy 2	CTOD			Plate	
	Yield	Tensile	Elonga-	V-notch,	Value	DUVID	Base	Thick-	Welding
	Strength,	Strength,	tion,	J	mm	PWHT	Metal	ness	Method
	MPa	MPa	%	−60°C	−10°C			mm	
_	560	640	32	140	2.36	As-welded	YP420	25	X groove, multi-
	500	610	30	180	2.80	600°C×1.5hr	11420		layer

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
75	4.8	75 70 38 5 5 32	$\begin{array}{c} 1 \\ 2 \sim 13 \\ 14 \\ 15 \sim 29 \end{array}$		27 32 28 32	30 30 30 30	Multi-layer, with back gouging
25	4.8		1~11	700	30	30	Multi-layer

Submerged Arc Welding Materials for Low Temperature Service Steel

	Sp	ecification		Typi	cal Che	emica f Wel
Brand Name	лѕ	AWS	Application and Characteristics	С	Si	Mn
		☆ A5.23 F8A4- EH14-G	Multi·layer butt welding and fillet welding of up to 570 MPa tensile strength grade such as ASTM A537 Cl.2 plate or APIX65 pipe. NSH™-60 is an agglomerated flux containing iron powder, and is able to make high deposition rate and deep penetration welding. Combined with a wire of Y-D, It is able to high heat input welding up to approx. 150kJ/cm.	0.08	0.41	1.84
	Weld	ling Position	AWS/ASME F/1G			
NF·310 _ ☆ A5.23 × F8A8·EG-G Y-E F8P4·EG-G		F8A8-EG-G	Single and multi-layer flat butt welding of aluminium-killed steel for low temperature ser- vice for LPG storage tanks, installations for low temperature service and structures to be used in frigid areas. Weld metal shows extremely high toughness and excellent ductility. Weldability is satisfactory and slag is easy to remove.	0.09	0.27	1.3
	Weld	ling Position	AWS/ASME F/1G			
NF-310 × Y-DM3	_	☆ A5.23 F8A8-EG-G F8P4-EG-G	Single and multi-layer flat butt welding of aluminum-killed steel for low temperature ser- vice for LPG storage tanks, installations for low temperature service and structures to be used in frigid areas. Weld metal shows extremely high toughness and excellent ductility. Weldability is satisfactory and slag is easy to remove.		0.20	1.0
	Weld	ling Position	AWS/ASME F/1G		ļ	
NB-55E × Y-CM	_	_	Single-layer welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG storage tanks.	0.08	0.24	1.4
	Weld	ling Position	AWS/ASME F/1G			
NB-55 × Y-CMS	_	☆ A5.23 F8A8-EA4-A4 F8P8-EA4-A4	Multi-layer welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG storage tanks.	0.08	0.13	1.3
	Weld	ling Position	AWS/ASME F/1G			
NB-55 × Y-DM	F9P8-EA3-G		Single-layer welding of aluminium-killed steel for low temperature service for offshore structures, ships and LPG storage tanks.	0.09	0.12	1.6
1 10101						

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Comp Metal	osition (%)			I	Typical Mech Properties of W	nanical eld Me	tal			Rema	rks	
Р	s	Mo	Ni	Yield Strength,	Tensile Strength,	Elonga- tion,		oy 2V- ich,	PWHT	Base	Plate Thickness	
				MPa	MPa	%	°C	J		Metal	mm	Plate Melding Method 25 20 Multi- layer 20 One pass
							-40	65				
0.016	0.008	_	_	620	650	28	-29	76	As- welded	YP420	25	
							-18	88				
						Ì	-75	120				
				520	590	31	-60	140	As-	AS		
							-45	160	welded			
0.016	0.009	_	_				-30	_				Multi- layer
							-75					layer
				500	570	33	-60	86	630°C× 1hr			
							-45 -30	130 150		N- TUF	20	
							-60	100		325N		
				530	600	27	-45	160	As-	_		
				000	000		-30	170	welded			
0.013	0.011	0.19	-				-60	72				
				520	600	30	-45	140	630°C× 1hr			
							-30	170	Inr			
							-60	63				
0.010	0.003	0.18	_	490	650	27	-40	120	_	EH36	27	both
							-60	87	As-			
0.010	0.004	0.40		560	620	23	-40	120	welded	EH36	24	Multi-
0.010	0.004	0.40	-	530	590	25	-60	160	620°C×	ЕПЭО	24	layer
				000	000	20	-40	200	2hr			
				570	660	26	-60	62	As- welded			Multi-
0.009	0.002	0.35	-	550	630	28	-60	48	620°C× 2hr SPV490		24	layer (DC+)

SAW

131

SAW

YM-55H

JIS Z 3312 G55AP4C0 *AWS A5.28 ER80S-G

For Low Temperature Service Steel

APPLICATIONS

GMAW

3

Welding of 490MPa high tensile strength steel for alminium-killed steel of low temperature.

CHARACTERISTICS

This is a gas metal arc welding wire to be used with $\rm CO_2$ Shield gas. Arc is stable. spatters are few and weldability is good even in high welding current range. It assures excellent toughness at low temperatures down to -45°C.

GUIDELINES FOR USAGE

For low temperature alminium-killed steel used for storage tanks, structures for cold regions, offshore structures, and class E steel for shipbuilding.

WELDING POSITION

AWS/ASME F/1G HF/2F H/2C

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Ni	Mo
0.08	0.44	1.36	0.006	0.002	-	0.18

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength, MPa	Tensile Strength, MPa	Elongation, %	Charpy 2	V-notch, J
560	630	29	-40°C	-20°C
000	690	29	70	145

TYPICAL WELDING JOINT TEST RESULT

Join	t Tensile Test	Ch		V-notcl	L T		Plate	
	Location of		arpy 2	v-note:	n, J	Base metal	thickness	Welding Method
	Fracture	-60°C	−40°C	−20°C	0°C	metai	mm	method
570	Base metal	50	90	-	-	A516Gr70	20	Two pass V-up of one side
590	Base metal	-	_	90	110	SM490B	20	One pass V-up of one side

■ SIZES<DC(+)>

Diame	eter (mm)	1.2	1.6
Cumont	F	$80 \sim 350$	$250 \sim 550$
Current A	H-Fill	80~350	$250 \sim 550$
	Н	80~300	$250 \sim 450$

YM-69F

*JIS Z 3312 G78A6UG0 *AWS A5.28 ER120S-G

For 780MPa High Tensile Strength Steel

APPLICATIONS

Welding of YP690 steel and TS780MPa high tensile strength steel (WEL-TEN™ 780, 780C and 780E etc.) of down to -60°C for offshore structures, pressure vessels, tanks, penstocks, turbine casings, crane and construction machineries.

CHARACTERISTICS

YM-69F that is used with $Ar+CO_2$ and $Ar+O_2$ shielding gas is a solid wire for gas metal arc welding. Weld metal of YM-69F that is used with $Ar+10\%CO_2$ shielding gas shows excellent toughness over 69J in low temperature range down to -60°C.

GUIDELINES FOR USAGE

- 1. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.
- 2. Preheating at 100~180°C is necessary depending on plate thickness and welding conditions.
- 3. It should be used Ar+10%CO₂ shielding gas, if the absorbed energy is required over 69J at -60° C.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL with Ar+10%CO₂ (%)

С	Si	Mn	Ni	Cr	Mo	
0.07	0.30	1.32	2.82	0.45	0.30	

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL with Ar+10%CO₂

	Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch	
	MPa	MPa	%	at -60°C, J	
-	810	877	19	98	

■ TYPICAL WELD JOINT TEST

	Base	metal	Welding conditions		Joint tensile test			Charpy	
	Type of Steel	Plate Thickness	Welding position	Heat input kJ/cm	Groove geometry	Yield Strength, MPa	Tensile Strength, MPa	Location of Fracture	2V-notch at -60°C, J
	WEDOO	20	Flat	18	V groove,	-	810	Base Metal	91
v	WT780	/T780 20	Vertical-up	17	Multi-layer and back gouging	815	910	-	100

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)> (Shielding gas: Ar+10%CO₂)

Diameter (mm)	1.2				
	F, H	180~320			
Current	VU, OH	100~200			
А	Н	$100 \sim 250$			
	VD	$100 \sim 250$			

GMAW

WELDREAM

Gas Metal Arc Welding Wires for Low Temperture Service Steel

	•				
		Specifica	tion		
Brand Name	Shield Gas	JIS	AWS	Dia. mm	Application and Characteristics
YM-28E	$\begin{array}{c} \operatorname{Ar} \\ + \\ 10\% \\ \operatorname{CO}_2 \end{array}$	Z 3312 G49AP3UM12	☆A5.18 ER70S-G	0.9 1.0 1.2 1.6	YM-28E is a gas metal arc welding wire to b used with Ar+5 \sim 25%CO ₂ shield gas. Weldabilit, is satisfactory and bead appearance is beautifu in both dip transfer and spray arc welding. Wel- metal shows excellent mechanical propertie and toughness. Ar+10%CO ₂ is used for welding aluminium-killed steel for low temperature ser- vice.
	Weld	ing Position	AWS/ASME] F/10	G HF/2F
YM-36E	$\begin{array}{c} \mathrm{Ar} \\ + \\ \mathrm{20\%} \\ \mathrm{CO}_{\mathrm{z}} \end{array}$	Z 3312 G49AP6M17	☆A5.18 ER70S-G	1.2 1.6	YM-36E is a Ti-B type gas metal arc welding wire to be used with Ar+5~25%CO ₂ shield gas Weldability is satisfactory and bead appear ance is beautiful in both dip transfer and spray arc welding. It assures excellent toughness and CTOD values at low temperatures down to -60°C in a wide heat input range.
	Weld	ing Position	AWS/ASME] F/10	G HF/2F
YM-1N	$\begin{array}{c} \mathrm{Ar} \\ + \\ \mathrm{10\%} \\ \mathrm{CO}_2 \end{array}$	Z 3312 G57AP6MN2M1T	☆A5.28 ER80S-G	1.2 1.6	YM-1N is a gas metal arc welding wire to b used with Ar+5~20%CO ₂ shield gas. Weldabilit is satisfactory in spray arc and pulsed arc weld ing. Weld metal shows excellent toughness in wide heat input range from low to comparativel high. High efficiency and quality are obtained i the welding of aluminium steel to be used aroun -45°C when it is used for OSCON process, ou manpower saving automatic welding process.
	Weld	ing Position	AWS/ASME] F/10	G HF/2F
YM-3N	Ar + 10% CO ₂	Z 3312 G49AP6UMN7	☆A5.28 ER80S-G	1.2 1.6	YM·3N is a gas metal arc welding wir to be used with Ar+5~20%CO ₂ shield gas Weldability is satisfactory and bead appear ance is beautiful in both dip transfer an spray arc welding. Weld metal shows excel lent toughness at low temperatures lik -60°C ~ -75°C.
	Weld	ing Position	AWS/ASME] F/10	G HF/2F
	Note : Figu	re of illustration	plating to th	o symb	ol of welding position in the table mentioned above

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Турі	cal Cher	nical Co	mpositi	on of We	eld Meta	al (%)	Typical I	Typical Mechanical Properties of Weld Mrtal				
С	Si	Mn	Р	s	Ni	Mo	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %		2V-notch J	Type of Current
0.07	0.61	1.21	0.008	0.005			460	570	30		0°C 40	DC(+)
0.05	0.33	1.20	0.004	0.002	_		500	540	30	-60°C 70	-40°C 220	DC(+)
0.05	0.39	1.10	0.007	0.005	0.98	0.22	530	590	28	-60°C 100	-30°C 130	DC(+)
0.04	0.30	0.70	0.006	0.004	3.56		540	610	27	-75°C 150	-40°C 200	DC(+)

GMAW

GMAW

YT-28E

For Low Temperature Service Steels

APPLICATIONS

Gas Tungsten Arc Welding of mild steel, 490MPa high tensile strength steel and aluminium-killed steel for low temperature service.

CHARACTERISTICS

YT-28E is filler rods for GTAW (TIG welding) to be used with Ar shielding gas. The weld metal shows stable toughness at low temperature range down to -40° C. The weld bead shape is excellent since high fluidity of molten pool and high affinity between molten pool and base metal. It also suitable for uranami (sound penetration bead) welding.

The operability is good since the surface of the filler rod is smooth.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S
0.07	0.60	1.45	0.010	0.005

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	Charpy 2V-notch	PWHT
MPa	MPa	%	at -40°C, J	
440	550	34	170	As weld

■ SIZES<DC(-)>

Diameter (mm)	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)	1000	1000	1000	1000	1000

Identification color: End-yellow

Heat Resisting Steel

Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires *AWS A5.5 E7016-A1

For 0.5%Mo Heat Resisting Steel

APPLICATIONS

Welding of piping steel (STPA12, A335-P1), boiler and heat exchanger tubes (STBA12, A209-T1), rolled steel ,(A204-A, B, C), cast steel (A217-WC1) and forged steel (A182-F1, A336-F1) $\,$.

CHARACTERISTICS

N-0S is a extra low hydrogen type electrode with a 0.5% Mo steel core wire and is suitable for welding C-Mo steel to be used at high temperatures up to 500°C.

GUIDELINES FOR USAGE

1. Electrodes should be redried at 350~400°C for 60 minutes before use.

2. Preheating at 100~200°C and postheating at 600~650°C are required.

WELDING POSITION

	Λ			Ŵ	① >
AWS/ASME	F/1G	HF/2F	H/2G	OH/4G	VU/3G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	S	Mo
0.06	0.51	0.60	0.012	0.006	0.52

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Yield Strength,	Tensile Strength,	Elongation,	PWHT	
MPa	MPa	%		
480	560	32	620°C×1h	

■ TYPICAL CREEP-RUPTURE STRENGTH OF WELD METAL

1,000h Creep-ru M	PWHT
500°C	
265	720°C×1h

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	r (mm)	2.6	3.2	4.0	5.0	6.0
Length (i	mm)	300	350	400	400	400
Current	F	60~90	90~140	140~190	$190 \sim 240$	240~300
А	V-up, OH	$50 \sim 80$	80~120	$110 \sim 150$	140~180	—

Identification color: End-green, secondary-light yellow

N-1S/CM-1A

*AWS A5.5 E8016-B2

For 1.25%Cr-0.5%Mo Heat Resisting Steel

APPLICATIONS

Welding of piping steel (STPA22, 23, A335-P11, P12), boiler and heat exchanger, tubes (STBA22, 23, A199-T11, A213-T11, T12), rolled steel (SCMV2, 3, A387Gr11, 12), cast steel (A217-WC6) and forged steel (A 182-F11, F12, A336-F12).

CHARACTERISTICS

N-1S and CM-1A are low hydrogen type electrodes for $1\sim1.50\%$ Cr-0.5%Mo steel in all posirions. The welding metals require postheating at 620~720°C and are able to used at high temperatures up to 550°C.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating at 150~300°C and postheating at 620~720°C are required.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Brand name	С	Si	Mn	Р	S	Cr	Mo
N-1S	0.06	0.45	0.60	0.013	0.006	1.26	0.51
CM-1A	0.08	0.31	0.72	0.007	0.006	1.30	0.46

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Brand name	Test Temperature	Yield Strength,	Tensile	Elongation,	Charpy 2V-notch	PWHT
branu name	°C	MPa	Strength, MPa	%	at −18°C, J	1 10111
N-1S	R.T.	570	660	27	—	690°C×1hr
CM-1A	R.T.	440	565	29	240	COORCIVEL
UM-1A	485	335	430	23	—	690°C×6hr

■ TYPICAL CREEP-RUPTURE STRENGTH OF WELD METAL

Brand name	1,000h Creep-rupt	ure Strength, MPa	PWHT
	550°C	600°C	I VV111
N-1S	170	92	720°C×1hr

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	N-1S	2.6	3.2	4.0	5.0	<u> </u>	
(mm)	n) CM-1A		_	4.0	0.0	6.0	
Length (m	m)	300	350	400	400	450	
Comment A	F	60~90	90~140	$140 \sim 190$	190~240	$240 \sim 300$	
Current A	VU, OH	50~80	80~120	$110 \sim 150$	140~180	_	

Identification color of N-1S: End-white, secondary-light yellow Identification color of CM-1A: End-white

N-25/CM-2A

For 2.25%Cr-0.5%Mo Heat Resisting Steel

APPLICATIONS

Welding of piping steel (STPA24, A335-P22), boiler and heat exchanger tubes (STBA24, A199-T22, A213-T22), rolled steel (SCMV4, A387Gr22, 22L), cast steel (A217-WC9) and forged steel (A182-F22, A336-F22).

CHARACTERISTICS

N-2S and CM-2A are low hydrogen type electrodes for 2.25%Cr-1%Mo steel in all posirions. The welding metals require postheating at 680~730°C and show extremely high creep-rupture strength at 550~600°C. In addition CM-2A is designed for the excellent notch toughness and low temper embrittlement.

GUIDELINES FOR USAGE

1. Electrodes should be redried at 350~400°C for 60 minutes before use. 2. Preheating at 200~300°C and postheating at 680~730°C are required.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Brand name	С	Si	Mn	Р	S	Cr	Mo
N-2S	0.06	0.57	0.58	0.010	0.006	2.29	1.00
CM-2A	0.09	0.23	0.65	0.007	0.005	2.32	1.06

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Durandaran	Test Temperature	Yield Strength,	Tensile	Elongation,	Charpy 2V-notch	PWHT
Brand name	°C	MPa	Strength, MPa	%	at −40°C, J	Р₩ПІ
N-2S	R.T.	590	690	24	_	690°C×1hr
CM 94	R.T.	485	630	30	SR: 120, SR+SC: 91	690°C×8hr
CM-2A	454	375	490	17	_	690°C×8nr

■ TYPICAL CREEP-RUPTURE STRENGTH OF WELD METAL

Brand name	1,000h Creep-rupture Strength, MPa 468°C	PWHT
N-2S	290	690°C×12hr

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

Diameter	N-2S	2.6	3.2	1.0	5.0	C 0
(mm)	CM-2A	_	0.4	4.0	5.0	6.0
Length (m	m)	300	350	400	400	450
Cumont A	F	60~90	90~140	140~190	$190 \sim 240$	$240 \sim 300$
Current A	VU, OH	50~80	80~120	110~150	140~180	_

Identification color of N-1S: End-red, secondary-light yellow Identification color of CM-2A: End-yellow

Covered Arc Welding Electrodes for Heat Resisting Steel

	ldentif	ication	Specif	ication		
Brand	Co	lor	speci		Dia.	
Name	End	Secon- dary	JIS	AWS	mm	Application and Characteristics
N-2SM	Yellow	Blue	_	☆A5.5 E9016-B3	3.2 4.0 5.0	Extra low hydrogen type electrode with a 2.25%Cr-1%Mo core wire. Weld metal rarely embrittles during service.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
N-3	Green	Black	_	☆A5.5 E9016-G	2.6 3.2 4.0 5.0 6.0	Extra low hydrogen type 1.7%Mn·0.7%Ni·0.4%Mo low alloy steel electrode. It is suitable for welding ASTM A533-B steel which is used for pressure vessels for nuclear reactor container.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
N-P31	Light green	_	_	☆A5.5 E9016-G	3.2 4.0 5.0 6.0	Low hydrogen type electrode suitable for ASTM A533 Type B, C class 1 steel.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G
N-P32	Light blue	_	_	☆A5.5 E9016-G	3.2 4.0 5.0 6.0	Low hydrogen type electrode suitable for ASTM A533 Type B, C class 2 steel.
	Welding	Position	AWS/ASME	F/1G	HF/2F	H/2G OH/4G VU/3G

Typical Chemical Composition of Weld Metal (%)							Test	, ,	Typical Me of	echanic Weld N		ties				
С	Si	Mn	Р	s	Ni	Cr	Mo	v	rature °C	Yield Strength, MPa	Tensile Strength, MPa	Elonga ⁻ tion, %	Charpy 2V-notch, J	PWHT		
									RT	590	680	26	-29°C 160	690°C×6hi		
0.11	0.33	0.66	0.007	0.004		2.24	1.00		454	460	530	21	−29°C 70	690°C×6hi +SC		
0.11	0.55	0.66	0.007	0.004	-	2.24	1.00	-	RT	550	650	27	-29°C 160	690°C×19.8h		
									454	420	500	20	−29°C 80	690°C×19.8h +SC		
										590	680	30	-12°C 170	625°C×1hr		
0.05	0.24	1.72	0.005	0.004	0.82	_	0.35	0.35 —	0.35 —).35 —	R.T.	520	600	30	-12°C 180	625°C× 45hr
									R.T.	580	640	24	0°C 140	620°C×2h		
0.08	0.35	1.29	0.012	0.006	0.40	_	0.46	-	R.T.	540	610	27	0°C 150	620°C× 40hr		
									R.T.	620	690	23	0°C 130	610°C×2h		
0.08	0.29	1.45	0.011	0.006	0.74	-	0.46	0.46 —	R.T.	600	660	26	0°C 140	610°C× 40hr		

Note : SC means Socal step cooling.

Figure of illustration relating to the symbol of welding position in the table mentioned above.

Note : SC means Socal step cooling.

4

NF-250 × Y-511

*JIS Z 3183 S642-1CM *AWS A5.23 F8P2-EG-B2

For 1.25%Cr-0.5%Mo Heat Resisting Steel

APPLICATIONS

Narrow gap welding of 1~1.25%Cr-0.5%Mo heat resisting steel for boiler drums, main steam tubes, superheated steam tubes and chemical engineering apparatus.

CHARACTERISTICS

Slag is extremely easy to remove in one-layer one-pass or one-layer two-pass multi-layer narrow gap welding. NF-250 is a high basic type flux and chemical composition rarely changes even in multi-layer welding. Weld metal shows excellent toughness.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating of 150~250°C and postheating of 600~720°C are required.
- 3. Welding conditions should be carefully set up since excessive heat input and arc voltage against a given groove width may cause undercuts.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	\mathbf{Cr}	Mo	Base Metal	Plate Thickness mm	Welding Method	Groove
0.10	0.29	0.75	0.010	0.004	1.35	0.49	A387Gr11	50	3.2mm, tandem multi-layer	7R 3° U groove

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength, MPa	Elong- ation, %	Charpy 2 V-notch at -20°C, J	PWHT	Base Metal	Plate Thickness mm	Welding Method	Groove
600	27	150	650°C×4h	A387Gr11	50	3.2mm, tandem	7R 3° U
540	29	100	680°C×12h	ASO/GrII	00	one-layer one-pass multi-layer	groove

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
			$1 \sim 2$	450	26	25	
	(1) 9.9	3°	3~13	(L) 450	26	50	7T 1
50	(L) 3.2 (T) 3.2	50 45	3~13	(T) 450	26	50	Tandem multi-laver
	(1) 3.2		14	(L) 450 (T) 450	26 26	45	muni layer
				(1) 450	26		

NB-250M × Y-521H

*JIS Z 3183 S642-2CM *AWS A5.23 F9P2-EG-B3

For 2.25%Cr-1%Mo Heat Resisting Steel

APPLICATIONS

Multi-layer welding of extremely thick 2.25%Cr-1%Mo heat resisting steel for petroleum refining apparatus and chemical plants.

CHARACTERISTICS

NB-250M is a high basic type flux of low hydrogen content and, therefore, susceptibility to cracking caused by hydrogen is low. Weld metal shows excellent low temperature toughness and resistance to embrittlement during service.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 200-350°C for 60 minutes before use.
- 2. Preheating at 150-250°C, interpass temperatures and post heating at 680-730 °C are required.
- 3. Satisfactory weldability and weld metal properties are obtained with heat input of less than 40kJ/cm.

WELDING POSITION

4

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Cr	Mo	Base Metal	Plate Thickness mm	Welding Method					
0.13	0.15	0.71	0.009	0.003	2.21	0.97	A387 Gr22	38	4.0mm,single narrow gap					

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Test Temp °C	- Tensile Strength, MPa	Elonga- tion, %	PWHT	Charpy 2 V-notch at -45°C, J	PWHT	Base Metal	Plate Thickness mm	Welding Method
R. T.	660	25	SR	150	$690^{\circ}C\times$			4.0mm,
454	510	20	SR+SC	110	4h	A387	38	single
R. T.	590	32	SR	180	700°C×	Gr22	00	narrow
454	450	23	SR+SC	120	4h			gap

Note : SC means Socal step cooling.

NB-2CM × Y-521

*JIS Z 3183 S642-2CM *AWS A5.23 F9P2-EB3-B3

For 2.25%Cr-1%Mo Heat Resisting Steel

APPLICATIONS

Multi-layer welding of $2.25\% {\rm Cr}\textsc{-}1\% {\rm Mo}$ heat resisting steel for boiler drums and pressure vessels.

CHARACTERISTICS

Slag is extremely easy to remove in one-layer two-pass malti-layer narrow gap welding. Obtained weld metal shows excellent toughness and low temper-embrittlement.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 350~400°C for 60 minutes before use.
- 2. Preheating of 150~250°C and postheating of 680~720°C are required.
- 3. Welding conditions should be carefully set up since excessive heat input and arc voltage against a given groove width may cause undercuts.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

С	Si	Mn	Р	s	Cr	Mo	Base Metal	Plate Thickness mm	Welding Method
0.13	0.16	0.85	0.009	0.002	2.27	0.98	A387Gr22	50	4.0mm, tandem one- layer two-pass

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength, MPa	Elong- ation, %	Charpy 2 V-notch at -40°C, J	PWHT	Base Metal	Plate Thickness mm	Welding Method	Groove
640	25	180	690°C×7h	A387Gr22	50	4.0mm, tandem	+26mm+
590	30	195	690°C×26h	A3070122	50	one-layer two- pass multi-layer	

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note
50	(L) 4.0 (T) 4.0	↑ 50mm ↓ +24mm +	all	(L) 560/570 (T) 560/570		57	Tandem multi-layer

NF-250 × Y-204

*JIS Z 3183 S642-MN *AWS A5.23 F9P6-EG-G

For 1.3%Mn-0.5%Mo and 1.3%Mn-0.5%Mo-0.5%Ni Heat Resisting Steel

APPLICATIONS

Narrow gap welding of ASTM A302B and A533B steel for nuclear reactor pressure vessels.

CHARACTERISTICS

Slag is extremely easy to remove in narrow gap welding. NF-250 is a high basic type flux and chemical composition rarely changes even in multi-layer welding. Weld metal shows excellent toughness.

GUIDELINES FOR USAGE

Welding conditions should be carefully set up since excessive heat input and arc voltage against a given groove width may cause undercuts.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

	С	Si	Mn	Р	s	Ni	Mo	Base Metal	Plate Thickness mm	Welding Method
0	0.07	0.18	1.76	0.011	0.002	0.67	0.45	A533B	150	3.2mm, tandem multi-layer

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Test Temp.	Tensile Strength,	Elon- gation,	Charpy 2	2 V-notch, J	PWHT	Base Metal	Plate Thickness	Welding Method
°C	MPa	%	−27°C	−17°C		Wietai	mm	
R. T.	630	29						3.2mm, tandem multi-
350	560	23	140	150	630°C×45h	A533B	150	layer.
	000							Heat input: 28~35kJ/cm 4.0mm, tandem multi-
R. T.	600	30	200	24.0	000000	1 TOOD	1.0	. '
350	550	27	200	210	630°C×45h	A533B	150	layer.
550	000	1						Heat input: 32~37kJ/cm

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

Plate Thickness mm	Wire Dia. mm	Groove Geometry	Pass	Current, A	Voltage, V	Speed, cm/min	Note	
	(1) 0.0		1	500	27	25	m 1	
150	(L) 3.2 (T) 3.2		2~43	(L) 450	27	40~50	Tandem multi-layer	
	(1) 5.2	14	2~45	(T) 450	25	40~50	inditi layer	
	(T) 4.0		1~2	500	27	25	/m 1	
150	(L) 4.0 (T) 4.0		0.01	(L) 550	29	50	Tandem multi-laver	
	(1) 4.0	20 1.	3~61	(T) 550	27	00	multi-layer	

Submerged Arc Welding Materials for Heat Resisting Steel

D 1	Spe	cification		Typical Chemical of Weld			
Brand Name	JIS	AWS	Application and Characteristics	С	Si	Mn	
NF-1 × Y-DM × X 3183 S624·H4 × S624·H4 F9P0-EA3·A3 F9P0-EA3·A3			Multi-layer narrow gap welding of ASTM A204 and A299 steel for boilers and pressure vessels. The combination is suitable for narrow gap weld- ing since slag is extremely easy to remove and flux consumption rate is low. Weld metal shows high toughness and excellent weldability and joint properties are assured even in high current welding.	0.10	0.18	1.39	
	Weldi	ng Position	AWS/ASME F/1G				
NB-1CM ×	☆ Z 3183 S642-1CM	☆ A5.23 F9P2-EB2-B2	Multi-layer narrow gap welding of 1~1.25%Cr- 0.5%Mo heat resisting steel for boiler drums and pressure vessels.	0.09	0.27	1.17	
Y-511(S)	Weldi	ng Position	AWS/ASME F/1G				

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

Composition Metal (%)					Р	Typical M roperties c			Remarks				
Р	P S Mo Cr Ni		Yield Strength,					PWHT	Base Metal	Plate Thick-	Welding Method		
					MPa	MPa	%	°C	J		Wietai	ness	Method
0.016	0.005	0.52			640	670	27	-20	73	625°C ×3.5hr	A204C	50	I narrow groove, multi-layer (tandem)
								0	110				
0.008	0.002	0.54	1.39	_	430	580	28	-18	201	690°C× 3.5hr	A387	25	Multi-layer
				-	410	530	29	-18	220	690°C× 20.5hr	Gr11		(tandem)

4

YM-505

*JIS Z 3317 G49C3M3T *AWS A5.28 ER80S-G

For 0.5%Mo Heat Resisting steel

APPLICATIONS

Welding with CO₂ gas for 0.5% Mo Steels such as piping steel (STPA12, A335-P1), boiler and heat exchanger tubes (STBA12, A209-T1), rooled steel (A204-A, B and C), cast steel (A217-WC1) and forged steel (A182-F1, A336-F1).

CHARACTERISTICS

This is stable, spatters are few and bead appearance is good. Preheating at 100~200°C and postheating at 620~720°C are required. This product is used at higt temperatures up to 500°C and is not suitable for low temperature operation.

GUIDELINES FOR USAGE

- 1. Preheating and PWHT should be carried out accrding to the specification such as ASME and so on.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%, *ppm)

Brand name	Shielding gas	С	Si	Mn	Р	S	Cr	Mo	Sb	Sn	As	X-bar*
YM-505	$\rm CO_2$	0.07	0.46	1.07	0.004	0.005	-	0.49	-	-	-	-

*Note; X-bar=(10×%P+5×%Sb+4×%Sn+%As)×100

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Brand name	Shielding gas	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Charpy 2V-notch at -10°C, J	PWHT
YM-505	CO_2	630	670	26	110	as weld
110-202	CO_2	610	680	27	95	620°C×1.0hrs.

■ SIZES & RECOMMENDED CURRENT <DC(+)>

Diameter (mm))	1.0	1.2	1.6
Current	F/1G, HF/2F	$70 \sim 250$	$200 \sim 350$	$300 \sim 500$
Range	H/2G, VU/3G	$70 \sim 150$	$100 \sim 250$	—
(A)	OH/4G, VD/3G	$70 \sim 150$	100~200	—

YM-511/YM-511A

*JIS Z 3317 G55C1CMT1 *AWS A5.28 ER80S-G *JIS Z 3317 G55M1CMT *AWS A5.28 ER80S-G

For 1~1.25%Cr-0.5%Mo Heat Resisting Steels

APPLICATIONS

YM-511: Welding with CO₂ gas for 1~1.5%Cr-0.5%Mo Steels such as ASTM A335 P11/12 boiler tube.

YM-511A: Welding with Ar+CO₂ mixture gas for 1~1.25%Cr-0.5%Mo Steels such as ASTM A387 Gr 12 or A335 P11/12

CHARACTERISTICS

For YM-511, arc is stable and bead appearance is good. And, this product is not suitable for low temperature operation.

YM-511A is suitable for ASTM A387 Gr.11 & Gr.12 as well as T12 boiler tube. And, it is available to low temperature operation up to -18° C, further it meets the requirement of X-bar and temper embrittlment as per API 934-A(Step Cooling test) under PWHT conditions of 691°C×2~20 hours.

GUIDELINES FOR USAGE

- 1. Preheating and PWHT should be carried out accrding to the specification such as ASME and so on.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and pits.
- 3. From the above reason, provide a windbreak apparatus, especially in case shielded by Ar+5~25% CO2 mixtures.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%.*ppm)

									<u> </u>			
Brand name	Shielding gas	С	Si	Mn	Р	S	Cr	Mo	Sb	Sn	As	X-bar*
YM-511	CO_2	0.07	0.38	1.00	0.014	0.009	1.05	0.5	-	-	-	_
YM-511A	Ar+20%CO ₂	0.06	0.35	0.78	0.005	0.002	1.28	0.54	0.001	0.001	0.002	6.1

*Note; X-bar=(10×%P+5×%Sb+4×%Sn+%As)×100

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Brand name	Shielding	Yield Strength,	Tensile Strength,	Elon- gation,		arpy otch, J	PWHT
name	gas	MPa	MPa	%	-23°C	0°C	
YM-511	CO ₂	—	670	36	_	160	720°C×1hr.
VM-511A	Ar+20%CO2	450	560	29	74		691°C×3.5hrs.
YM-511A	Ar+20%002	450	450	32	74	_	691°C×24.5hrs.

■ SIZES & RECOMMENDED CURRENT <DC(+)>

Diameter (mm))	1.0	1.2	1.6
Current	F/1G, HF/2F	$70 \sim 250$	$200 \sim 350$	$300 \sim 500$
Range	H/2G, VU/3G	$70 \sim 150$	$100 \sim 250$	—
(A)	OH/4G, VD/3G	$70 \sim 150$	100~200	—

YM-521/YM-521A

*JIS Z 3317 G62C2C1M3 *AWS A5.28 ER90S-G *JIS Z 3317 G62M2C1M2 *AWS A5.28 ER90S-G

For 2.25%Cr-1%Mo Heat Resisting Steels

APPLICATIONS

YM-521: Welding with $\rm CO_2$ gas for 2.25%Cr-1%Mo Steels such as ASTM A335 P22 boiler tube.

YM-521A: Welding with Ar+CO $_2$ gas for 2.25% Cr-1%Mo Steels such as ASTM A387 Gr.22 or A335 P22.

CHARACTERISTICS

YM-521 can be welded with CO_2 gas shielding. Arc is stable and bead appearance is good. And, this product is not suitable for low temperature operation.

YM 521A shoud be with shielding gas of Ar+5~25%CO₂ mixtures. This product is suitable for ASTM A387 Gr.22 as well as T22 boiler tube. And, it is available to low temperature operation up to -29°C, further it meets the requirement of X-bar and temper embrittlment as per API 934-A(Step Cooling test) under PWHT conditions of $691^{\circ}C\times5^{\sim}34$ hours.

GUIDELINES FOR USAGE

- 1. Preheating and PWHT should be carried out accrding to the specification such as ASME and so on.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and pits.
- 3. From the above reason, provide a windbreak apparatus, especially shielded by Ar+5~25% CO2 mixtures.

WELDING POSITION

AWS/ASME F/1G HF/2F H/2G

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%,*ppm)

Trade name	Shielding gas	С	Si	Mn	Р	S	Cr	Mo	Sb	Sn	As	X-bar*
YM-521	CO ₂	0.06	0.59	1.30	0.013	0.009	2.40	0.92	-	-	-	_
YM-521A	Ar+20%CO ₂	0.11	0.19	0.67	0.006	0.002	2.38	1.02	0.001	0.001	0.002	7.1

*Note; X-bar=(10×%P+5×%Sb+4×%Sn+%As)×100

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Trade name	Shielding gas	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Cha 2V-no -29°C		PWHT			
YM-521	CO_2	_	670	25		110	700°C×1hr.			
YM-521A	1-1900/00	490	630	29	103	_	691°C×5.5hrs.			
1M-921A	Ar+20%CO ₂	390	590	31	102	—	691°C×33.5hrs.			
■ SIZES & RECOMMENDED CURRENT <dc()="" +=""></dc(>										

Diameter (mm))	1.0	1.2	1.6
Current	F/1G, HF/2F	$70 \sim 250$	$200 \sim 350$	300~500
Range	H/2G, VU/3G	$70 \sim 150$	$100 \sim 250$	—
(A)	OH/4G, VD/3G	$70 \sim 150$	100~200	—

YT-505/YT-511/YT-521

*JIS Z 3317 W55G *AWS A5.28 ER80S-G *JIS Z 3317 W551CMT *AWS A5.28 ER90S-G JIS Z 3317 W622C1M2 *AWS A5.28 ER90S-G

For 0.5% Mo, 1~1.25%Cr-0.5%Mo and 2.25%Cr-1%Mo Heat Resisting Steels

APPLICATIONS

YT·505: Welding of 0.5% Mo steels such as ASTM A204 Gr. A·C or A335 P1 boiler tube. YT·511: Welding of 1~1.25%Cr·0.5%Mo Steels such as ASTM A387 Gr.11 or A335 P11/12 YT·521: Welding of 2.25%Cr·1%Mo Steels such as ASTM A387 Gr.22 or A335 P22.

CHARACTERISTICS

YT·505, YT·511 and YT·521 are filler rods and spool wire for GTAW (TIG welding) to be used with Ar shield gas. Those products show good welding performance in Uranami welding (penetration bead welding).

GUIDELINES FOR USAGE

- 1. Preheating and PWHT should be carried out accrding to the specification such as ASME and so on.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.
- 3. When uranami welding, it is recommended 100% Ar gas backings.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Trade name	Shielding gas	С	Si	Mn	Р	S	Cr	Mo	Sb	Sn	As	X-bar*
YT-505	100%Ar	0.09	0.02	1.74	0.013	0.004	-	0.46	-	-	-	—
YT-511	100%Ar	0.1	0.22	0.84	0.005	0.002	1.43	0.51	0.001	0.001	0.002	6.1
YT-521	100%Ar	0.12	0.08	0.76	0.005	0.004	2.35	0.98	0.001	0.001	0.002	6.1

*Note; X-bar=(10×%P+5×%Sb+4×%Sn+%As)×100

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Trade name	Shielding gas	Yield Strength, MPa	Tensile Strength, MPa	Elon- gation, %	Cha 2V-no	urpy otch, J	PWHT
YT-505	100%Ar	590	670	33	277 (-50°C)	280 (-36°C)	590°C×2.2hrs.
11-909	100%Ar	520	600	31	279 (-50°C)	279 (-36°C)	645°C×9hrs.
YT-511	100%Ar	490	630	28	208 (-23°C)	231 (-12°С)	691°C×3.5hr
11-011	100%Ar	390	590	32	234 (-23°C)	278 (-12°C)	691°C×24.5hrs.
YT-521	1000/ Am	500	650	29	-	279 (-29°С)	691°C×5.5hr
11-021	100%Ar	490	630	29	246 (-50°C)	266 (-29°С)	691°C×33.5hrs.

■ SIZES<DC(-)>

Diameter (mm)	0.8	1.0	1.2	1.6	2.0	2.4	3.2
Length of Filler Rod (mm)	—	100%	1000	1000	1000	1000	1000
Weight of spool wire (kg)	12.5	12.5	12.5	100%	100%	100%	100%

Memo

- - - - - - - - - - - - - -- - - - - - -----------. - - - -

MEL

Boiler Tube/Pipe

Covered Arc Welding Electrodes Gas Tungsten Arc Welding Rods and Wires

Covered Arc Welding Electrodes for Boiler Tube/Pipe

| Brand | ldentif
Co | ìcation
lor | Specif | ication | Dia. | | | | | |
|----------|-----------------------|-----------------|----------|--------------------|---------------------------------|---|--|--|--|--|
| Name | End | Secon-
dary | JIS | AWS | mm | Application and Characteristics | | | | |
| N-0S | Green | Light
yellow | _ | ☆ A5.5
E7016-A1 | 2.6
3.2
4.0
5.0
6.0 | N-0S is a extra low hydrogen type electrod
with a 0.5% Mo steel core wire and is suitabl
for welding C-Mo steel to be used at high ten
peratures up to 500°C. | | | | |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | H/2G OH/4G VU/3G | | | | |
| N-1S | White Light
yellow | | _ | ☆ A5.5
E8016-B2 | 2.6
3.2
4.0
5.0
6.0 | N-1S is a extra low hydrogen type electrod
with a 1.25%Cr-0.5% Mo steel core wire and
suitable for welding 1~1.50%Cr-0.5%Mo stee
to be used at high temperatures up to 550°C. | | | | |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | H/2G OH/4G VU/3G | | | | |
| N-2S | Red | Light
yellow | _ | ☆ A5.5
E9016-B3 | 2.6
3.2
4.0
5.0
6.0 | N-2S is an extra low hydrogen type electrod
with a 2.25%Cr1%Mo steel core wire and
suitable for welding 2.25%Cr1%Mo steel to b
used at high temperatures up to 600°C. Wel
Metal shows extremely high creep-ruptur
strength at 550-600°C. | | | | |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | H/2G OH/4G VU/3G | | | | |
| N-HCM2S | Red | _ | _ | | 2.6
3.2
4.0 | Low hydrogen type electrode suitable fo
HCM2S™ (2.25%Cr·1.6%W-Mo·Nb·V) stee
such as ASTM T23/P23. | | | | |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | H/2G OH/4G VU/3G | | | | |
| N-HCM12A | Cream | _ | _ | _ | 2.6
3.2
4.0
5.0 | Low hydrogen type electrode suitable for
HCM12A steel (11%Cr-2%W-0.4%Mo-Cu-Nb-V
such as ASTM T122/P122. | | | | |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | H/2G OH/4G VU/3G | | | | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| Ту | pical Chen | nical Com | position (| of Weld N | Ietal (%) | Typical | Mechanical
Me | Properties
tal | s of Weld | |
|------|------------|-----------|------------|-----------|--|---------------------------|-----------------------------|-----------------------|---------------------------------|--------------|
| С | Si | Mn | Р | s | Others | Yield
Strength,
MPa | Tensile
Strength,
MPa | Elonga-
tion,
% | Charpy 2V-notch
at 0°C,
J | PWHT |
| 0.06 | 0.51 | 0.60 | 0.012 | 0.006 | Mo: 0.52 | 480 | 560 | 32 | _ | 620°C×1h |
| 0.06 | 0.45 | 0.60 | 0.013 | 0.006 | Cr: 1.26
Mo: 0.51 | 570 | 660 | 27 | _ | 690°C×1h |
| 0.06 | 0.57 | 0.58 | 0.010 | 0.006 | Cr: 2.29
Mo: 1.00 | 590 | 690 | 24 | | 690°C×1h |
| 0.06 | 0.41 | 0.80 | 0.004 | 0.002 | Cr : 2.25
Mo: 0.10
Ni : 0.99 | 875 | 980 | 21 | 28 | As
welded |
| 0.00 | 0.41 | 0.00 | 0.004 | 0.002 | W : 1.6
Nb : 0.04
V : 0.3 | 625 | 755 | 20 | 120 | 715°C×1h |
| 0.08 | 0.25 | 0.84 | 0.004 | 0.001 | $\begin{array}{l} Cr &: 10.5 \\ M_0 &: 0.20 \\ Ni &: 0.80 \\ W &: 1.4 \\ Nb &: 0.03 \\ V &: 0.18 \\ Cu &: 1.4 \end{array}$ | 665 | 810 | 23 | 54 | 740°C×5h |

Gas Tungsten Arc Welding Rods and Wires for Boiler Tube/Pipe

| Brand | | ication
lor | Specif | ication | Dia. | | | |
|-------------------|-----|----------------|-----------------------------------|------------------|-----------------------------------|---|--|--|
| Brand
Name | End | Secon-
dary | JIS | AWS | mm | Application and Characteristics | | |
| YT-HCM2S | | | ☆ Z 3317
W57
-2CMWV-
Ni | _ | 1.0
1.2
1.6
2.0
2.4 | Welding of HCM2S™ (2.25%Cr·1.6%W·Mo-
Nb·V) such as ASTM T23/P23 | | |
| YT-9ST | | | ☆ Z 3317
W62
-9C1MV1 | A5.28
ER90S-G | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of Mod. 9%Cr-1%Mo (9%Cr-1%M
Nb-V) such as ASTM T91/P91 | | |
| YT·HCM12A | _ | _ | ☆ Z 3317
W69
-10CMWV-
Cu | _ | $1.0 \\ 1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of HCM12A (11%Cr-2%W-0.4%Mo-Cu-
Nb-V) such as ASTM T122/P122 | | |
| YT·HR3C
T·HR3C | | | _ | _ | 1.0
1.2
1.6
2.0
2.4 | Welding of HR3C (25%Cr-20%Ni-Nb-N) such
as SA213 TP310HCbN | | |

| Турі | ical Chem | ical Com | position (| of Weld N | fetal (%) | Typical Mechanical Properties of Weld
Metal | | | | |
|------|-----------|----------|------------|-----------|---|--|-----------------------------|-----------------------|---------------------------------|----------------|
| С | Si | Mn | Р | s | Others | Yield
Strength,
MPa | Tensile
Strength,
MPa | Elonga-
tion,
% | Charpy 2V-notch
at 0°C,
J | PWHT |
| 0.05 | 0.38 | 0.85 | 0.004 | 0.004 | $\begin{array}{l} Cr & : 2.25 \\ Mo & : 0.10 \\ Ni & : 0.80 \\ W & : 1.6 \\ Nb & : 0.04 \\ V & : 0.25 \end{array}$ | 780 | 860 | 21 | 70 | As
welded |
| 0.07 | 0.08 | 1.05 | 0.008 | 0.005 | $\begin{array}{l} Cr & : 8.84 \\ Mo & : 1.01 \\ Ni & : 0.29 \\ Nb & : 0.05 \\ V & : 0.25 \end{array}$ | 580 | 710 | 25 | _ | 740°C×
8.4h |
| 0.08 | 0.35 | 0.52 | 0.010 | 0.002 | $\begin{array}{l} Cr &: 10.4 \\ Mo &: 0.30 \\ Ni &: 1.10 \\ W &: 1.60 \\ Nb &: 0.05 \\ V &: 0.2 \\ Cu &: 1.4 \end{array}$ | 660 | 790 | 24 | 110 | 740°C×
0.5h |
| 0.06 | 0.30 | 1.51 | 0.003 | 0.005 | $\begin{array}{l} Cr & : 27.0 \\ Mo & : 0.91 \\ Ni & : 20.1 \\ Cu & : 2.94 \\ Nb & : 0.45 \\ N & : 0.31 \end{array}$ | 480 | 710 | 35 | _ | As
welded |

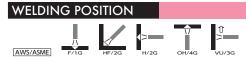
159

YT-304H/T-304H

For SUPER304H™ (18%Cr-9%Ni-3%Cu-N)

APPLICATIONS

Welding of SUPER304H (18%Cr-9%Ni-3%Cu-N)


CHARACTERISTICS

YT-304H & T-304H are filler rods and spool wire for GTAW (TIG Welding) to be used with Ar shiled gas. The chemical compositions of this product are specially designed to reduce hot cracking, which is often occurred in welding of full Austeniticstainless steel.

T-304H is the product certified by TÜV.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding.
- 2. Shield Gas : 100% Ar
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Р | S | Cu | Ni | Cr | Mo | N | Nb+Ta |
|------|------|------|-------|-------|------|------|------|-----|------|-------|
| 0.07 | 0.22 | 3.18 | 0.005 | 0.004 | 2.60 | 15.7 | 17.6 | 0.8 | 0.17 | 0.6 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength, | Tensile Strength, | Elongation, | Charpy 2V-notch |
|-----------------|-------------------|-------------|-----------------|
| MPa | Mpa | % | at -10°C, J |
| 617 | 657 | 25 | 118 |

SIZES

| Dia. (mm) | 0.8 | 1.0 | 1.2 | 1.6 | 2.0 | 2.4 |
|-----------------------------|-----|-----|-----|------|------|------|
| Length of Filler
Rod(mm) | _ | _ | _ | 1000 | 1000 | 1000 |
| Weight of Spool
wire(kg) | 5 | 10 | 10 | _ | — | _ |

5

VELDREA

Atmospheric Corrosion Resisting Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

SF-50W

For 400~490MPa Atmospheric Corrosion Resisting Steel

APPLICATIONS

Welding of $400 \sim 490$ MPa atmospheric corrosion resisting steel (W specification) such as SMA400W and 490W for steel frames and bridges.

CHARACTERISTICS

SF-50W is a rutile type seamless flux cored arc welding wire to be used with CO_2 shield gas. Diffusible hydrogen content is extremely low and, consequently, weld metal shows excellent crack resistance. Weldability is excellent, and, especially in horizontal fillet welding, bead is beautiful and slag is easy to remove.

GUIDELINES FOR USAGE

- 1. Preheating at 50~150°C is required depending on plate thickness, restraint, surface condition of base metal, heat input, etc.
- 2. All water, rust and oil in groove should be removed.
- 3. Select optimum welding conditions, heat input for example, in accordance with welding positions.
- 4. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

SF-60W

JIS Z 3320 T57J1T1-1CA-NCC1-UH5 *AWS A5.29 E81T1-W2C-H4

For Atmospheric Corrosion Resisting Steel

APPLICATIONS

Welding of 590MPa atmospheric corrosion resisting steel (W specification) such as SMA570W and 570W for steel brames and bridges.

CHARACTERISTICS

Rutile type seamless flux cored wire for welding 590MPa atmospheric corrosion resisting steel. The diffusible hydrogen content is extremely low and, consequently, crack resistance is high. Spatters are few and weldability is excellent.

GUIDELINES FOR USAGE

- 1. Preheating at 50~150°C is required depending on plate thickness, restraint, surface condition of base metal, heat input, etc.
- 2. All water, rust and oil in groove should be removed.
- 3. Select optimum welding conditions, heat input for example, in accordance with welding positions.
- 4. For others, see GUIDELINES FOR USAGE 1~4 of SF-1.

WELDING POSITION

FCAW

6

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| Shield Gas | С | Si | Mn | Р | S | Cu | Ni | Cr |
|-----------------|------|------|------|-------|-------|------|------|------|
| CO_2 | 0.04 | 0.35 | 0.80 | 0.015 | 0.008 | 0.34 | 0.44 | 0.47 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at 0°C,
J |
|------------------------|--------------------------|------------------|---------------------------------|
| 500 | 580 | 26 | 100 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Diameter (| mm) | 1.2 | 1.6 |
|------------|-------|---------|----------------|
| 0 | F | 180~300 | $220 \sim 450$ |
| Current | H-Fil | 180~300 | 220~450 |
| А | V-up | 180~250 | 200~280 |

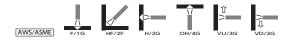
■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Р | S | Cu | Ni | Cr |
|------|------|------|-------|-------|------|------|------|
| 0.05 | 0.50 | 1.18 | 0.012 | 0.005 | 0.42 | 0.61 | 0.51 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at -5°C,
J |
|------------------------|--------------------------|------------------|----------------------------------|
| 630 | 685 | 22 | 115 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>


| Diameter (mm) | | 1.2 |
|---------------|-------|---------|
| 0 | F | 180~300 |
| Current | H-Fil | 180~300 |
| | V-up | 180~250 |

ELDREAM

Covered Arc Welding Electrodes for Atmospheric Corrosion Resisting Steel

| Brand | | ication
lor | Specif | ication | Dia. | Base
met- | Application and Characteristics |
|----------|---------|-----------------|------------------------------|------------------|--|--------------|---|
| Name | End | Secon-
dary | JIS | AWS | mm | al | Application and Characteristics |
| CT-03Cr | Red | Black | ☆Z 3214
E49J03-
NCCAU | _ | 2.6
3.2
4.0 | W | Lime-titania type electrode for welding
of ASTM A242 steel thinner than 9 mm
and finish welding of thick plates. Weld-
ability is excellent in all positions. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | н | /2G OH/4G VU/3G |
| CT-16Cr | White | Yellow | ☆Z 3214
E49J16-
NCCAU | ☆A5.5
E7016-G | 2.6
3.2
4.0
5.0
6.0 | W | Extra low hydrogen type electrode for
welding of medium and thick plates in
all positions. Crack resistance and me-
chanical properties are excellent. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | н | /2G OH/4G VU/3G |
| CT·16VCr | Silver | Blue | _ | ☆A5.5
E7016-G | 3.2
4.0
5.0 | w | Extra low hydrogen type electrode for
vertical downhand welding of fillet and
butt joints. Weld metal shows excellent
crack resistance and mechanical proper-
ties. High welding efficiency is assured
since high current can be used. |
| | Welding | Position | AWS/ASME | VD/3G | | | |
| CT-26MCr | Blue | White | - | _ | $ \begin{array}{r} 4.0 \\ 4.5 \\ 5.0 \\ 5.5 \\ 6.0 \end{array} $ | w | Iron powder titania type electrode for flat
and horizontal fillet welding. Spatters
are few and bead shape is beautiful with
equal leg length and without undercuts.
It also is suitable for gravity welding. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | | |
| CT-60Cr | Scarlet | Light
yellow | ☆Z 3214
E57J16-
NCC1AU | ☆A5.5
E8016-G | 3.2
4.0
5.0
6.0 | W
P | Extra low hydrogen type electrode for
welding of ASTM A242 and A588 steel in
all positions. It assures excellent weld-
ability, X-ray properties, crack resistance
and mechanical properties. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | н | /2G OH/4G VU/3G |
| | | | | | _ | | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typical
o | Chemic
f Weld I | al Com
Metal (% | position
6) | | | Typical Mechar
of Wele | nical Properties
d Metal | |
|------|--------------|--------------------|--------------------|----------------|------|------------------------|---------------------------|-----------------------------|---------------------------------|
| С | Si | Mn | Cu | Cr | Ni | Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at 0°C,
J |
| 0.05 | 0.16 | 0.41 | 0.32 | 0.48 | 0.15 | 500 | 570 | 29 | 110 |
| 0.04 | 0.37 | 0.62 | 0.35 | 0.50 | 0.14 | 500 | 560 | 30 | 240 |
| 0.06 | 0.41 | 0.72 | 0.32 | 0.47 | 0.13 | 520 | 570 | 29 | 160 |
| 0.07 | 0.31 | 0.85 | 0.33 | 0.48 | 0.14 | 470 | 550 | 30 | 110 |
| 0.07 | 0.38 | 0.67 | 0.44 | 0.56 | 0.62 | 520 | 610 | 25 | -18°C
180 |

SMAW

6

WELDREAM

Submerged Arc Welding Materials for Atmospheric Corrosion Resisting Steel

| Brand | Specif | ication | Base | Application and | | | Тур | oical Ch | emical
of Weld |
|-----------------------|----------------------|---------------------|---------------------------------|---|------|------|------|----------|-------------------|
| Name | JIS | AWS | al | Characteristics | С | Si | Mn | Р | s |
| NF-820
×
Y-CNCW | ☆Z 3183
S50J2-AW1 | ☆A5.23
F7A0-EG-G | | | 0.05 | 0.66 | 1.57 | 0.011 | 0.006 |
| | Welding | Position | AWS/A | ASME 1F HF/2F | | | | | |
| YF-15B
×
Y-CNCW | ☆Z 3183
S50J2-AW1 | ☆A5.23
F7A4•EG•G | W Flat fillet and butt welding. | | 0.07 | 0.45 | 1.31 | 0.014 | 0.007 |
| | Welding Position | | AWS/A | SME F/1G | | | | | |
| NF-310
×
Y-CNCW | ☆Z 3183
S50J2-AW1 | W | | Single and multi-layer
welding of mild steel and
490MPa atmospheric corro-
sion resisting steel requiring
low temperature toughness.
Ti-B type weld metal shows
excellent low temperature
toughness. | 0.08 | 0.22 | 0.89 | 0.007 | 0.008 |
| | Welding Position | | AWS/ASME F/1G | | | | | | |
| NF-820
×
Y-60W | ☆Z 3183
S582-AW1 | ☆A5.23
F8A0-EG-G | w | Fillet and butt welding of
590MPa atmospheric corro-
sion resisting steel. | | 0.60 | 1.67 | 0.012 | 0.008 |
| | Welding Position | | AWS/A | AWS/ASME 1F HF/2F | | | | | |
| YF-15B
×
Y-60W | ☆Z 3183
S58J2-AW1 | ☆A5.23
F8A2-EG-G | w | Flat fillet and butt welding
of 590MPa atmospheric cor-
rosion resisting steel. | | 0.45 | 1.43 | 0.018 | 0.009 |
| | Welding | Position | AWS/A | AWS/ASME F/1G | | | | | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

AWS/ASME HF/2F H/2G OH/4G

| | Composition
Metal (%) | | Typical Mechanical
Properties of Weld Metal | | | | | Remarks | | |
|------|--------------------------|------|--|----------------------|------------------------------|-----|--------------|--------------|--------------------|----------------|
| Cu | Ni | Cr | Yield
Strength, | Tensile
Strength, | Elonga [.]
tion, | | v 2 V-notch, | Base Metal | Plate
Thickness | Welding Method |
| | | | MPa | MPa | % | °C | J | | mm | |
| 0.35 | 0.14 | 0.56 | 490 | 570 | 27 | 0 | 76 | SMA
490BW | 20 | Multi-layer |
| 0.37 | 0.11 | 0.55 | 510 | 600 | 27 | -20 | 85 | SMA | 20 | Multi-layer |
| 0.57 | 0.11 | 0.55 | 510 | 000 | 21 | 0 | 120 | 490BW | 20 | Mutti layei |
| | 0.12 | 0.59 | 0.59 560 | 600 | 28 | -60 | 130 | SMA
490BW | 20 | Multi-layer |
| 0.37 | | | | | | -40 | 150 | | | |
| | | | | | | -20 | 170 | | | |
| 0.37 | 0.10 | 0.56 | 540 | 640 | 25 | -5 | 66 | SMA
570W | 20 | Multi-layer |
| 0.37 | 0.10 | 0.57 | 520 | 630 | 29 | -5 | 88 | SMA
570W | 20 | Multi-layer |

SAW

6

SAW

Gas Metal Arc Welding Wires for Atmospheric Corrosion Resisting Steel

| | | Specif | ication | | |
|---------------|---------------------|-------------------------------|-------------------|-------------------|--|
| Brand
Name | Shield
Gas | JIS | AWS | Dia.
mm | Application and Characteristics |
| YM-55W | CO_2 | ☆Z 3315
G49JA0UC1-
NCCJ | ☆A5.28
ER80S-G | 0.9
1.2
1.6 | Welding of mild steel and $400 \sim 490$ MPa atmospheric
corrosion resisting steel (W specification) for various
structural works.
YM-55W is a gas metal arc welding wire for all posi-
tions to be used with CO ₂ shield gas. Arc is stable,
spatters are few and weldability is good in wide cur-
rent range. |
| | Welding
Position | AWS/ASME |] F/1G | HF/2F | H/2G VD/3G |
| YM-60W | CO ₂ | ☆Z 3315
G57JA1UC1-
NCCJ | ☆A5.28
ER80S-G | 0.9
1.2
1.6 | Welding of 570MPa atmospheric corrosion resisting
steel (W specification) for various constructions.
YM-60W is a gas metal arc welding wire for all posi-
tions to be used with CO_2 shield gas. Arc is stable,
spatter are few and weldability is good in wide cur-
rent range. |
| | Welding
Position | AWS/ASME |] F/1G | HF/2F | H/2G VD/3G |
| FGC-55 | CO ₂ | ☆Z 3315
G49A0UC1-
CCJ | ☆A5.28
ER80S-G | 1.0
1.2
1.6 | Welding of 400~490MPa atmospheric corrosion resist-
ing steel (P specifications) and sulfuric acid corrosion
resisting steel (S-TEN™1) for various structural
works.
FGC-55 is a gas metal arc welding wire for all posi-
tions. |
| | Welding
Position | AWS/ASME |] F/1G | HF/2F | H/2G VD/3G |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| Ty | pical Cl | nemical | l Compo | osition o | of Weld | Metal (| (%) | Typical Mechanical Properties of Weld Metal | | | | |
|------|----------|---------|---------|-----------|---------|---------|------|---|-----------------------------|-----------------------|---------------------------------|--------------------|
| С | Si | Mn | Р | s | Cu | Cr | Ni | Yield
Strength,
MPa | Tensile
Strength,
MPa | Elon-
gation,
% | Charpy 2V-notch
at 0°C,
J | Type of
Current |
| 0.06 | 0.48 | 1.05 | 0.006 | 0.008 | 0.50 | 0.61 | 0.21 | 580 | 630 | 27 | 90 | DC(+) |
| 0.07 | 0.38 | 0.83 | 0.016 | 0.005 | 0.58 | 0.50 | 0.46 | 540 | 640 | 26 | −5°C
110 | DC(+) |
| 0.08 | 0.36 | 0.98 | 0.016 | 0.005 | 0.35 | 0.48 | | 460 | 570 | 25 | 180 | DC(+) |

GMAW

6

WELDREAM

Memo

---------- - - -

WELDREAN

Sulphuric Acid Corrosion Resisting Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

SF-1ST

High corrosion-resistance equipment to S-TEN™1

APPLICATIONS

High corrosion resisting low alloy steel S-TEN1 for use in flue-gas treatment equipment at thermal power stations and waste incineration plants, and chloride acid washing tanks.

CHARACTERISTICS

Corrosion resistance of the weld metal is as high as that of the base metal, thus reducing concern of corrosion to a minimum. It is attributed to the alloying composition control technology, which was applied to S-TEN1 and has also been used in the development of the welding materials to secure high corrosion-resistance.

The weld metal gives not only remarkably higher hydrochloric-acid dewpoint corrosion resistance but also improved sulfuric-acid dew-point corrosion resistance, as compared with that of the conventional welding materials

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
- 2. A suitable shield gas flow rate is $20 \sim 25 \ell$ /min.
- 3. Distance between base metal and tip should be kept within 20~30mm.
- 4. Arc voltage should be 1 or 2 volt lower than that for conventional flux cored wires and 4 or 5 volt lower than that for solid wires.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| Shield Gas | С | Si | Mn | Р | S | Cu | Sb |
|-----------------|------|------|------|-------|-------|------|------|
| CO_2 | 0.05 | 0.60 | 1.41 | 0.012 | 0.013 | 0.39 | 0.10 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at 0°C,
J |
|------------------------|--------------------------|------------------|---------------------------------|
| 580 | 640 | 27 | 47 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

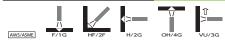
| Diameter (mm) | | 1.2 | | |
|---------------|-------|---------|--|--|
| | F | 180~320 | | |
| 0 | H-Fil | 180~320 | | |
| Current | Н | 180~300 | | |
| А | V-up | 180~260 | | |
| | OH | 180~260 | | |

FC-23ST

for Sulphuric Acid Corrosion Resisting Steel

APPLICATIONS

Rutile type flux cored wire for welding S-TEN™2, sulphuric acid corrosion resisting steel. Spatters are few and weldability is excellent.


CHARACTERISTICS

Rutile type flux cored wire for welding S-TEN2, sulphuric acid corrosion resisting steel. Spatters are few and weldability is excellent.

GUIDELINES FOR USAGE

- 1. Any welding machine for solid wire can be used as it is, but wire feed roller's pressure should be adjusted a little looser.
- 2. A suitable shield gas flow rate is $20\sim 25\ell/min$.
- 3. Distance between base metal and tip should be kept within 20~30mm.
- 4. Arc voltage should be 1 or 2 volt lower than that for conventional flux cored wires and 4 or 5 volt lower than that for solid wires.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| Shield Gas | С | Si | Mn | Р | S | Cu | Cr |
|-----------------|------|------|------|-------|-------|------|------|
| CO_2 | 0.04 | 0.36 | 0.97 | 0.018 | 0.014 | 0.35 | 0.77 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at 0°C,
J |
|------------------------|--------------------------|------------------|---------------------------------|
| 530 | 600 | 25 | 62 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Diameter (mm) | | 1.2 |
|---------------|-------|---------|
| | F | 180~320 |
| 0 | H-Fil | 180~320 |
| Current | Н | 180~300 |
| 11 | V-up | 180~260 |
| | OH | 180~260 |

ST-16M

High corrosion-resistance equivalent to S-TEN™1

APPLICATIONS

Corrosion resisting low alloy steel for use in flue-gas treatment equipment at thermal power stations and waste incineration plants, and chloride acid washing tanks.

CHARACTERISTICS

Corrosion resistance of the weld metal is as high as that of the base metal, thus reducing concern of corrosion to a minimum. It is attributed to the alloving composition control technology, which was applied to S-TEN1 and has also been used in the development of the welding materials to secure high corrosionresistance

The weld metal gives not only remarkably higher hydrochloric-acid dewpoint corrosion resistance but also improved sulfuric-acid dew-point corrosion resistance, as compared with that of the conventional welding materials.

GUIDELINES FOR USAGE

- 1. Electrode should be redried at 300~350°C for 60 minutes before use.
- 2. Backstep method should be applied to prevent blowholes and pit at arc starting and arc length should be kept as short as possible during welding.
- 3. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Р | S | Cu | Sb |
|------|------|------|-------|-------|------|------|
| 0.04 | 0.62 | 0.50 | 0.009 | 0.004 | 0.42 | 0.08 |

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V notch
at 0°C,
J |
|------------------------|--------------------------|------------------|---------------------------------|
| 470 | 570 | 29 | 170 |

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

| Diameter (mi | n) | 2.6 | 3.2 | 4.0 | 5.0 |
|--------------|----------|--------|---------|----------------|---------|
| Length (mm) | | 350 | 350 | 400 | 400 |
| Current | F | 70~100 | 100~140 | $150 \sim 200$ | 190~250 |
| А | V-up, OH | 60~90 | 80~110 | $120 \sim 160$ | 140~180 |

Identification color: End-yellow, secondary-light blue

| M | e | m | 0 |
|---|---|---|---|
| | | | |

Covered Arc Welding Electrodes for Sulfuric Acid Corrosion Resisting Steel

| Brand | | ication
lor | Specif | ication | Dia. | |
|----------|-----------------|----------------|-------------------|-------------------|-------------------|---|
| Name | End | Secon-
dary | JIS | AWS | mm | Application and Characteristics |
| ST-03Cr | White | Blue | Z 3211
E4903-G | _ | 2.6
3.2
4.0 | Lime-titania type electrode for welding of S-
TEN™2 steel in all positions. Weld metal
contains Cu and Cr, and shows high corrosion
resistance to sulfur dew point, sea water and
polluted water. Excellent weldability makes it
suitable for welding thin plates of less than 9
mm and finish welding of thick plates. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | H/2G OH/4G VU/3G |
| ST-16Cr | Light
yellow | Orange | Z 3211
E5516-G | ☆ A5.5
E7016-G | 3.2
4.0
5.0 | Extra low hydrogen type electrode for welding
of medium and thick S·TEN™2 plates in all
positions. Weld metal contains Cu and Cr, and
shows high corrosion resistance to sulfur dew
point, sea water and polluted water. Crack
resistance and mechanical properties are ex-
cellent. |
| | Welding | Position | AWS/ASME F/1G | | HF/2F | H/2G OH/4G VU/3G |
| ST-03CrA | Orange | _ | Z 3211
E4903-G | _ | 2.6
3.2
4.0 | Suitable for CR1A. Its coating is lime-titania
type and the operating performance is excel-
lent in all positions. It is also applicable for
sea water corrosion resisting steel. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | H/2G OH/4G VU/3G |
| ST-16CrA | Green | _ | Z 3211
E4916-G | ☆ A5.5
E7016-G | 3.2
4.0 | Suitable for CR1A. Its coating is low hydrogen
type and crack-resistance of weld metal and
mechanical properties are excellent. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | H/2G OH/4G VU/3G |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| Ту | pical Ch
of W | emical C
eld Meta | | on | | Typical Mechan
of Wele | nical Properties
d Metal | |
|------|------------------|----------------------|------|------|------------------------|---------------------------|-----------------------------|---------------------------------|
| С | Si | Mn | Cu | Cr | Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at 0°C,
J |
| 0.06 | 0.15 | 0.56 | 0.23 | 0.79 | 460 | 530 | 26 | 110 |
| 0.05 | 0.50 | 0.48 | 0.20 | 0.73 | 480 | 570 | 27 | 200 |
| 0.08 | 0.24 | 0.66 | 0.22 | 1.23 | 500 | 570 | 25 | 59 |
| 0.07 | 0.38 | 0.69 | 0.23 | 1.18 | 570 | 620 | 26 | 180 |

WELDREAN

7

Submaged Arc Welding Meterial for Sulphuric Acid Corrosion Resisting Steel

| Brand | Specif | ication | | | | | |
|----------------------|---------|----------|---|--|--|--|--|
| Name | | | Application and Characteristics | | | | |
| NB-1ST
×
Y-1ST | | | Corrosion resistance of the weld metal is as high as that of the base
metal, thus reducing concern of corrosion to a minimum. It is attributed
to the alloying composition control technology, which was applied to
S'TEN™1 and has also been used in the development of the welding
materials to secure high corrosion-resistance. | | | | |
| | Welding | Position | AWS/ASME F/1G | | | | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| Т | Typical Chemical Composition
of Weld Metal (%) | | | Typical Mechanical Properties
of Weld Metal | | | | Remarks | | | | | | |
|------|---|------|-------|--|------|------|---------------------------|-----------------------------|-----------------------|-------------------|-----|---------------|--------------------------|-------------------|
| С | Si | Mn | Р | s | Cu | Sb | Yield
Strength,
MPa | Tensile
Strength,
MPa | Elonga-
tion,
% | Cha
2V-n
°C | | Base
Metal | Plate
Thickness
mm | Welding
Method |
| 0.03 | 0.34 | 1.13 | 0.007 | 0.011 | 0.19 | 0.09 | 450 | 530 | 31 | 0 | 141 | S-TEN1 | 19 | Multi
layer |

179

Gas Metal Arc Welding Wires for Sulphuric Acid Corroison Resisting Steel

| | | Specification | | | | | |
|---------------|---------------------|---------------|------|------------|--|--|--|
| Brand
Name | Shield
Gas | JIS | AWS | Dia.
mm | Application and Characteristics | | |
| YM-W4 | CO_2 | _ | | 0.9
1.2 | Welding of sulphuric acid corrosion resisting steel. | | |
| | Welding
Position | AWS/ASME | F/1G | HF/2F | H/2G VD/3G | | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Λ | | (> | Ŵ | Û
> ── | ≥ |
|----------|------|-------|--------------|-------|------------------|-------|
| AWS/ASME | F/1G | HF/2F | H/2G | OH/4G | VU/3G | VD/3G |

| | Typical Chemical Composition of Weld Metal (%) | | | | | | | | Typical Mechanical Properties of Weld Meta | | | | |
|---|--|------|------|-------|-------|------|------|----|--|-----------------------------|-----------------------|---------------------|--------------------|
| | С | Si | Mn | Р | s | Cu | Cr | Ni | Yield
Strength,
MPa | Tensile
Strength,
MPa | Elon-
gation,
% | Charpy
0°C,
J | Type of
Current |
| - | 0.08 | 0.44 | 0.89 | 0.012 | 0.006 | 0.45 | 0.91 | _ | 570 | 620 | 24 | 60 | DC (+) |
| | | | | | | | | | | | | -20°C
50 | |

YT-1ST

For high corrosion-resistance equipment to S-TEN™1

APPLICATIONS

Gas Tungsten Arc Welding of high corrosion resisting low alloy steel S-TEN1 for use in air preheaters, flue-gas treatment equipments, flues and smokestacks at waste incineration plants, thermal power stations and chloride acid washing tanks.

CHARACTERISTICS

Corrosion resistance of the weld metal is as high as that of the base metal, thus reducing concern of corrosion to a minimum. It is attributed to the alloying composition control technology, which was applied to S-TEN1 and has also been used in the development of the welding materials to secure high corrosionresistance.

The weld metal gives not only remarkably higher hydrochloric-acid dewpoint corrosion resistance but also improved sulfuric-acid dew-point corrosion resistance, as compared with that of the conventional welding materials. The weldability is excellent similar to mild steel welding.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Sb | Cu |
|------|------|------|------|------|
| 0.01 | 0.29 | 1.33 | 0.10 | 0.32 |

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength, | Tensile Strength, | Elongation, | Charpy 2V-notch | PWHT |
|-----------------|-------------------|-------------|-----------------|---------|
| MPa | MPa | % | at 0°C, J | |
| 400 | 480 | 39 | 280 | As weld |

■ SIZES<DC(-)>

| Diameter (mm) | 1.0 | 1.2 | 1.6 | 2.0 | 2.4 |
|---------------------------|-----|------|------|------|------|
| Length of Filler Rod (mm) | — | 1000 | 1000 | 1000 | 1000 |
| Weight of spool wire (kg) | 10 | _ | _ | _ | _ |

Identification color: End-non

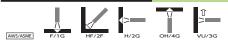
YT-W4

For Sulphuric Acid Corroison Resisting steel

APPLICATIONS

Gas Tungsten Arc Welding of sulphuric Acid Corroison Resisting steel.

CHARACTERISTICS


YT-W4 is filler rod and wire for GTAW (TIG welding) of sulphuric Acid Corroison Resisting steel.

The weldability is excellent similar to mild steel welding.

GUIDELINES FOR USAGE

- 1. Arc length should be kept as short as possible during welding. However, don't contact electrode and molten pool. If electrode contacts into molten pool, the weld metal that is included tungsten should be grinded.
- 2. All water, rust and oil in groove should be completely removed to prevent cracks and blowholes.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Cr | Cu |
|------|------|------|------|------|
| 0.06 | 0.54 | 1.05 | 0.73 | 0.35 |

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength, | Tensile Strength, | Elongation, | Charpy 2 | V-notch, J | PWHT |
|-----------------|-------------------|-------------|----------|------------|---------|
| MPa | MPa | % | -20°C | 0°C | |
| 510 | 580 | 26 | 150 | 71 | As weld |

■ SIZES<DC(-)>

| Diameter (mm) | 1.0 | 1.2 | 1.6 | 2.0 | 2.4 | 3.2 |
|---------------------------|-----|-----|------|------|------|------|
| Length of Filler Rod (mm) | _ | _ | 1000 | 1000 | 1000 | 1000 |
| Weight of spool wire (kg) | 10 | 10 | — | — | — | _ |

Identification color: End-orange

5

Memo

----------_____ ---------- - - - - - - - - - - - -- - - -

Sea Water Corrosion Resisting Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

Flux Cored Arc Welding Wires for Sea Water Corrosion Resisting Steel

| Brand Shield | | Specif | ication | Dia. | Analisation and Okamatanistian |
|--------------|---------------------|------------|---------------------------|------|--|
| Name | Gas | JIS | AWS | mm | Application and Characteristics |
| SF-55RS | $\rm CO_2$ | _ | ☆A5.29
E81T1-GC-
H4 | 1.2 | Rutile type seamless flux cored wire for weld-
ing MARILOY™ S400, S490, G400 and G490,
sea water corrosion resisting steel. Diffusible
hydrogen content is extremely low and crack
resistance is high. Weldability is excellent in
all positions. |
| | Welding
Position | AWS/ASME F | /1G HF/2F | H/2G | OH/4G VU/3G |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typical Chemical Composition
of Weld Metal (%) | | | | | | | Ту | 28 | Type | | |
|------|---|------|-------|-------|------|------|------|---------------------------|-----------------------------|-----------------------|-----------------------|---------------|
| С | Si | Mn | Р | s | Cu | Mo | Cr | Yield
Strength,
MPa | Tensile
Strength,
MPa | Elonga-
tion,
% | Charpy 2V-notch,
J | of
Current |
| 0.04 | 0.34 | 1.07 | 0.017 | 0.007 | 0.33 | 0.09 | 0.86 | 580 | 640 | 26 | 0°C
54 | DC
(+) |

8

186

FCAW

Covered Arc Welding Electrodes for Sea Water Corrosion Resisting Steel

| Brand | ldentification
Color | | Specification | | Dia. | Application and Characteristics |
|-------|-------------------------|----------------|-------------------|------------------|--------------------------|---|
| Name | End | Secon-
dary | JIS | AWS | mm | Application and Characteristics |
| RS-55 | Blue | _ | Z 3211
T4916-G | ☆A5.5
E8016-G | 3.2
4.0
5.0
6.0 | Low hydrogen type electrode for welding of sea
water corrosion resisting steel (MARILOY™
S400, S490) in all positions. Weld metal con-
tains Cr and shows high resistance to sea wa-
ter corrosion. Crack resistance and mechani-
cal properties are also excellent. |
| | Welding Position | | AWS/ASME | F/1G | HF/2F | H/2G OH/4G VU/3G |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typical
o | Chemic
f Weld I | | | | Typical Mechanical Properties
of Weld Metal | | | | |
|------|--------------|--------------------|----|------|----|--|--------------------------|------------------|---------------------------------|--|
| С | Si | Mn | Cu | Cr | Mo | Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at 0°C,
J | |
| 0.05 | 0.53 | 0.57 | _ | 1.00 | _ | 500 | 590 | 26 | 220 | |

8

188

8

WELDREAM

Gas Metal Arc Welding Wires for Sea Water Corrosion Resisting Steel

| | | Specifi | cation | | |
|---------------|---|----------|------------------|------------|---|
| Brand
Name | Shield
Gas | JIS | AWS ⁿ | | Application and Characteristics |
| YM-W4 | $\rm CO_2$ | _ | _ | 0.9
1.2 | Welding of 400~490MPa sea water corrosion resisting steel |
| | Welding
Position | AWS/ASME | F/1G | HF/2F | H/2G VD/3G |
| YM-55RSA | $\begin{array}{c} \mathrm{Ar+}\\ \mathrm{20\%CO_2} \end{array}$ | _ | _ | 1.2 | Welding of 400~490
MPa sea water corrosion resisting steel |
| 1M-99KSA | Welding
Position | AWS/ASME | F/1G | HF/2F | H/2G VD/3G |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| Ty | pical Cl | hemical | l Compo | osition o | of Weld | Metal | (%) | Typical M | echanical F | roperties | of Weld Metal | |
|------|----------|---------|---------|-----------|---------|-------|-----|---------------------------|-----------------------------|-----------------------|----------------------------------|--------------------|
| С | Si | Mn | Р | s | Cu | Cr | Ni | Yield
Strength,
MPa | Tensile
Strength,
MPa | Elon-
gation,
% | Charpy 2V- notch
at 0°C,
J | Type of
Current |
| 0.08 | 0.44 | 0.89 | 0.012 | 0.006 | 0.45 | 0.91 | | 570 | 620 | 24 | 60
-20°C
50 | DC (+) |
| 0.06 | 0.34 | 1.07 | 0.010 | 0.006 | 0.23 | 1.09 | _ | 460 | 550 | 28 | 190 | DC (+) |

GMAW

WELDREAM["]

GMAW

Gas Tungsten Arc Welding Rods and Wires for Sea Water Corrosion Resisting Steel

| Brand | Shield | Specif | ication | Dia. | Analisation and Observatoriation |
|----------|--------|--------|---------|-----------------------------------|--|
| Name Gas | | JIS | AWS | mm | Application and Characteristics |
| YT-W4 | Ar | _ | _ | 1.2
1.6
2.0
2.4
×1000 | Welding of sea water corrosion resisting steel
and salpharic acid corrosion resisting steel |
| YT-55RS | Ar | _ | _ | 2.4
×1000 | Welding of sea water corrosion resisting steel
(MARILOY TM S400 and S490). |

| Турі | ical Che | | Composi
d Metal | | | Typical Mechanical Properties
of Weld Metal | | | | |
|------|----------|------|--------------------|------|------------------------|--|------------------|--------------------|--|--|
| С | Si | Mn | Cr | Cu | Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 0°C,
J | | |
| 0.06 | 0.54 | 1.05 | 0.73 | 0.35 | 510 | 580 | 26 | 150
-20°C
71 | | |
| 0.04 | 0.31 | 1.05 | 1.16 | 0.11 | 480 | 540 | 27 | _ | | |

Memo

------ - - - - - -_____ - - - - - -- - - -

Stainless Steel

Flux Cored Arc Welding Wires Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Metal Arc Welding Wires Gas Tungsten Arc Welding Rods and Wires

SF-308L

JIS Z 3323 TS308L-FB0 *AWS A5.22 E308LT0-1

For Low Carbon 18% Cr-8% Ni Stainless Steel

APPLICATIONS

Welding of low carbon 18%Cr-8%Ni stainless steel for chemical apparatus. containers and plants.

CHARACTERISTICS

SF-308L is a seamless flux cored arc welding wire to be used with CO_2 or Ar+ more than 20%CO₂ shield gas. Spatters are few, slag is easy to remove and bead appearance and shape are excellent. It is highly resistant to moisture absorption and wire feeding is smooth since the wire has no seam. High welding efficiency is assured in flat and horizontal fillet positions.

GUIDELINES FOR USAGE

- 1. Distance between base metal and tip should be kept within the range of 15~25mm.
- 2. Shield gas flow rate should be kept within $20 \sim 25\ell/min$.

WELDING POSITION

SF-308LK

JIS Z 3323 TS308L-FB1 *AWS A5.22 E308LT1-1J

For Low Carbon 18% Cr-8% Ni Stainless Steel - Hiah Tensile Strenath & Hiah Tough SUS 304L -

APPLICATIONS

Welding of low carbon 18%Cr-8%Ni stainless steel for chemical apparatus, tanks and plants on low temperature.

CHARACTERISTICS

SF-308LK is a seamless flux cored arc welding wire to be used with CO_2 shield gas. This weld metal is high tensile strength and high tough for SUS304L. Spatters are few, slag is easy to remove and bead appearance and shape are excellent. It is highly resistant to moisture absorption and wire feeding is smooth since the wire has no seam. High welding efficiency is assured in all positions.

GUIDELINES FOR USAGE

- 1. Distance between base metal and tip should be kept within the range of 15~25mm.
- 2. Shield gas flow rate should be kept within 20~25 L/min.

WELDING POSITION

196

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| Shield Gas | С | Si | Mn | Р | S | Ni | Cr |
|-----------------|------|------|------|-------|-------|------|------|
| CO_2 | 0.03 | 0.59 | 1.51 | 0.024 | 0.008 | 10.7 | 19.9 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Tensile Strength, | Elongation, |
|-------------------|-------------|
| MPa | % |
| 550 | 41 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Diameter (mm) | 0.8 | 0.9 | 1.2 | 1.6 |
|---------------|---------------|--------|----------------|---------|
| Current (A) | $50 \sim 150$ | 70~170 | $100 \sim 250$ | 200~350 |

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| Shield Gas | С | Si | Mn | Р | S | Ni | \mathbf{Cr} | Ferrite ratio |
|-----------------|------|------|------|-------|-------|-----|---------------|---------------|
| CO_2 | 0.03 | 0.38 | 1.23 | 0.017 | 0.004 | 9.2 | 19.9 | 12 |

Ferrite ratio was calculated on cross section macro piece by FERITSCOPE FMP30 (Fischer).

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength, | Tensile Strength, | Elongation, | Charpy 2mr | n V-notch J |
|-----------------|-------------------|-------------|-----------------|-----------------|
| MPa | MPa | % | -196°C | -20°C |
| 453 | 646 | 35 | 41 (38, 41, 45) | 57 (55, 60, 55) |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Diameter (mm) | 1.2 |
|---------------|---------|
| Current (A) | 100~250 |

FCAW

g

WELDREAM

SF-309L

JIS Z 3323 TS309L-FB0 *AWS A5.22 E309LT0-1

For Dissimilar Metals such as Stainless Steel and Mild Steel

APPLICATIONS

18%Cr-8%Ni clad steel and parts of hardenable steel of which heat treatment after welding is impossible or which require low carbon weld metal.

CHARACTERISTICS

SF-309L is a seamless flux cored arc welding wire to be used with CO_2 or Ar+ more than 20%CO₂ shield gas. Spatters are few, slag is easy to remove and bead appearance and shape are excellent. It is highly resistant to moisture absorption and wire feeding is smooth since the wire has no seam. High welding efficiency is assured in flat and horizontal fillet positions.

GUIDELINES FOR USAGE

- 1. Distance between base metal and tip should be kept within the range of 15~25mm.
- 2. Shield gas flow rate should be kept within $20 \sim 25\ell/\text{min}$.

WELDING POSITION

SF-N309L

JIS Z 3323 TS309L-FN0 *AWS A5.22 E309LT0-3

For Dissimilar Metals such as Stainless Steel and Mild Steel -Self-Shielded type-

APPLICATIONS

Welding of dissimilar metal such as type 304L to carbon steel, welding the clad side of type 304L clad steels and cladding (surfacing) of stainless steel to carbon steel

CHARACTERISTICS

SF-N309L is a Self-Shielded seamless flux cored arc welding wire of type 309L stainless steel. Shielding gas is unnecessary and welding cost is reducible. It is a few spatters, easily removable slag and a smooth bead appearance. In addition, X-ray quality and Mechanical properties of weld metal is excellent.

GUIDELINES FOR USAGE

- 1. Distance between base metal and tip should be kept within the range of 20~30mm.
- 2. All water, rust and oil in groove should be completely removed to prevent welding porosity in weld metal.
- 3. In the welding of dissimilar metals, excessive dilution deteriorates crack and corrosion resistance. Should be been careful the penetration to base metal.

WELDING POSITION

FCAW

g

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| Shielding gas | С | Si | Mn | Ni | Cr |
|---------------|------|------|------|------|------|
| None | 0.03 | 0.65 | 1.50 | 12.6 | 24.3 |

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Shielding gas | Yield Strength, | Tensile Strength, | Elongation, | Charpy 2V-notch |
|---------------|-----------------|-------------------|-------------|-----------------|
| | MPa | MPa | % | at -20°C, J |
| None | 515 | 661 | 32 | 37 |

TYPICAL MECHANICAL PROPERTIES OF WELD JOINT

| Shielding gas | Tensile Strength,
MPa | Location of
Fracture | Charpy 2V-notch
at -20°C, J |
|---------------|--------------------------|-------------------------|--------------------------------|
| None | 507 | Base metal | 42 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Diameter (mm) | 1.2 |
|---------------|---------|
| Current (A) | 100~250 |

FCAW

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| Shield Gas | С | Si | Mn | Р | S | Ni | Cr |
|-----------------|------|------|------|-------|-------|------|------|
| CO_2 | 0.03 | 0.65 | 1.54 | 0.023 | 0.009 | 12.7 | 24.4 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Tensile Strength, | Elongation, |
|-------------------|-------------|
| MPa | % |
| 590 | 31 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Diameter (mm) | 0.8 | 0.9 | 1.2 | 1.6 |
|---------------|---------------|--------|----------------|----------------|
| Current (A) | $50 \sim 150$ | 70~170 | $100 \sim 250$ | $200 \sim 350$ |

WELDREAM

SF-316L

*JIS Z 3323 TS316L-FB0

*AWS A5.22 E316LT0-1

For Low Carbon 18% Cr-12% Ni-2%Mo Stainless Steel

APPLICATIONS

Welding of low carbon 18%Cr-8%Ni stainless steel for chemical engineering and power plants.

CHARACTERISTICS

SF-316L is a seamless flux cored arc welding wire to be used with CO_2 or Ar+ more than 20%CO₂ shield gas. Spatters are few, slag is easy to remove and bead appearance and shape are excellent. It is highly resistant to moisture absorption and wire feeding is smooth since the wire has no seam. High welding efficiency is assured in flat and horizontal fillet positions. 18%Cr-12%Ni-2%Mo weld metal contains an adequate amount of ferrite and shows excellent resistance to hot cracking.

GUIDELINES FOR USAGE

- 1. Distance between base metal and tip should be kept within the range of $15{\sim}25\mathrm{mm}.$
- 2. Shield gas flow rate should be kept within 20~25ℓ/min.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| Shielding gas | С | Si | Mn | Р | S | Ni | Cr | Mo |
|-----------------|------|------|------|-------|-------|------|------|------|
| CO_2 | 0.03 | 0.65 | 1.48 | 0.025 | 0.007 | 12.1 | 19.6 | 2.34 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Tensile Strength, | Elongation, |
|-------------------|-------------|
| MPa | % |
| 570 | 34 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Current (A) 50~150 | $70 \sim 170$ | $100 \sim 250$ | $200 \sim 350$ |
|--------------------|---------------|----------------|----------------|

SF-DP8/FC-DP8

Z3323 TS2209-FB0 A5.22 E2209T0-1

Welding Materials for 22% Cr Duplex Stainless Steels

APPLICATIONS

Welding of 22%Cr duplex stainless steel such as ASTM UNS S31803 and JIS SUS329J3L.

CHARACTERISTICS

SF-DP8 is a flux cored wire designed for duplex stainless steel.

It shows excellent welding performance such as good bead appearance, less spatter, easy slag removal and smoother wire feeding.

The weld deposit has a good resistance for Stress Corrosion Cracking (SCC) at as-welded condition.

GUIDELINES FOR USAGE

- 1. CO_2 gas of JIS class 3 or for welding use should be used.
- 2. Gas flow rate should be 20L/min, as a rule.
- 3. Tip to work distance should be kept within 15 to 20mm.
- 4. Wires should be used as soon as possible after taking out from package.
- 5. The welding machine for solid wire is available.

Size

Wire wound on spool: 1.2mm dia.

■ Typical chemical composition and mechanical properties (DC:wire(+))

| Electrode | Size
(mm) | Base
Metal | Groove Shape | Pass | Current
(A) | Volt.
(V) | Speed
(cm/min) |
|-----------|--------------|-----------------------------|--------------|----------------------|----------------|--------------|-------------------|
| | | JIS
SM490A | 45° | Multi
Pass | 200 | 30 | 35 |
| SF-DP8 | 1.2 | The groove | | Shield | ling Gas | Flow | Rate |
| | are b | are buttered
with SF-DP8 | | CO ₂ 100% | | 20 l/min. | |

| Chemical | С | Si | Mn | Р | S | Ni | Cr | Mo | N | Other |
|---------------------------------|------|------|------|-------|-------|-----|------|------|------|-------|
| Composition of
Weld Metal(%) | 0.03 | 0.44 | 1.14 | 0.019 | 0.006 | 8.8 | 23.5 | 3.05 | 0.13 | - |

| | | Tens | sion Test | Charpy Im | Hardness | | |
|--------------|---------------|--------------------------|----------------------------|-------------------------|----------|-----|---------------|
| PWHT | Test
Temp. | Yield
Strength
MPa | Tensile
Strength
MPa | Elongation
(5d)
% | -20°C | 0°C | Hv
(10kgf) |
| As
welded | Room
Temp. | 641 | 808 | 24.1 | 32 | _ | - |

| Corrosion test
(Huey test) | Corrosion rate (g/m ² h) | | | | | | | | |
|-------------------------------|-------------------------------------|-----|-----|-----|-----|---------|--|--|--|
| | 1st | 2nd | 3rd | 4th | 5th | Average | | | |
| ASTM A262 Practice C | - | _ | - | - | - | - | | | |

g

WELDREAM

FCAW

Flux Cored Arc Welding Wires for Stainless Steel

| Brand Name | Specifi | cation | Dia. | |
|------------|------------------------|-----------------------|-------------------|---|
| Brand Name | JIS | AWS | mm | Application and Characteristics |
| SF-308 | Z 3323 TS308-FB0 | ☆A5.22 E308T0-1 | 0.9
1.2
1.6 | Welding of SUS304 |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F |
| SF-308LP | Z 3323 TS308L-FB1 | ☆A5.22
E308LT1-1 | 1.2 | Positional Welding of SUS304L |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G OH/4G VU/3G |
| SF-309LP | Z 3323 TS309L-
FB1 | ☆A5.22
E309LT1-1 | 1.2 | All-possition type. Welding of low-C 22%Cr-
12Ni stainless steel and dissimilar metals |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G OH/4G VU/3G |
| SF-309MoL | Z 3323
TS309LMo·FB0 | ☆A5.22
E309LMoT0-1 | 0.9
1.2
1.6 | Welding of dissimilar metals such as 18%Cr-
12%Ni ⁻ 2%Mo stainless steel to mild steel |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F |
| SF-309MoLP | Z 3323
TS309LMo·FB1 | ☆A5.22
E309LMoT1-1 | 1.2 | All possition type. Welding of dissimilar met-
als such as 18%Cr-12%Ni-2%Mo stainless
steel to mild steel |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G OH/4G VU/3G |
| SF-316LP | Z 3323 TS316L-
FB1 | ☆A5.22 E316LT1-1 | 1.2 | Positional welding of SUS316L |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G OH/4G VU/3G |
| SF-317L | Z 3323 TS317L-
FB0 | ☆A5.22
E317LT0-1 | 1.2 | Welding of SUS317L |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typi | cal chemica | Typical chemical compositions of weld metal (%) | | | | | | | | | | |
|------|------|-------------|---|------|------|-------|------------|----------|--|--|--|--|--|
| С | Si | Mn | Ni | Cr | Mo | Other | TS,
MPa | El,
% | | | | | |
| 0.06 | 0.53 | 1.49 | 9.3 | 19.4 | _ | _ | 600 | 35 | | | | | |
| 0.03 | 0.52 | 1.49 | 10.3 | 20.5 | _ | _ | 560 | 38 | | | | | |
| 0.03 | 0.57 | 1.53 | 12.3 | 24.2 | _ | _ | 570 | 33 | | | | | |
| 0.04 | 0.62 | 1.49 | 13.1 | 23.7 | 2.38 | _ | 740 | 29 | | | | | |
| 0.03 | 0.51 | 1.02 | 12.9 | 24.0 | 2.25 | _ | 670 | 29 | | | | | |
| 0.03 | 0.58 | 1.10 | 12.3 | 19.2 | 2.30 | _ | 570 | 35 | | | | | |
| 0.03 | 0.65 | 0.93 | 13.3 | 19.7 | 3.32 | _ | 600 | 30 | | | | | |

FCAW

g

FCAW

g

Flux Cored Arc Welding Wires for Stainless Steel

| Brand Name | Specif | ication | Dia. | |
|--------------------|------------------------|------------------|--------------|--|
| Brand Name | JIS | AWS | mm | Application and Characteristics |
| SF-2120
FC-2120 | _ | _ | 1.2 | UNS S82122, S32101 Lean Duplex stainless steel |
| FC 2120 | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G VU/3G |
| SF-DP3 | Z 3323
TS329J4L-FB0 | _ | $1.2 \\ 1.6$ | Welding of SUS329J4L or UNS S39226 Duplex
Stainless steel |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F |
| SF-DP3W | _ | ☆A5.22 E2594T0-1 | $1.2 \\ 1.6$ | Welding of SUS329J4L or UNS S32750 Duplex
Stainless steel |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F |
| FCM-430NL | _ | _ | $1.0 \\ 1.2$ | Welding of SUS430 or SUS405 |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typi | cal chemica | l compositio | ons of weld | metal (%) | | Typical mechanical prop-
erties of weld metal | |
|------|------|-------------|--------------|-------------|-----------|--------------------------------|--|----------|
| С | Si | Mn | Ni | Cr | Mo | Other | TS,
MPa | El,
% |
| 0.04 | 0.61 | 1.02 | 10.1 | 26.8 | 0.93 | N: 0.10 | 790 | 26 |
| 0.04 | 0.64 | 1.00 | 10.4 | 25.6 | 2.82 | Cu: 0.41
W: 0.25
N: 0.13 | 845 | 25 |
| 0.03 | 0.60 | 1.12 | 9.5 | 26.0 | 3.67 | Cu: 0.41
W: 0.97
N: 0.22 | 910 | 24 |
| 0.03 | 0.40 | 0.24 | _ | 17.9 | _ | Nb: 0.50 | 520 | 28 |

204

g

WELDREAM["]

S-308·R

JIS Z 3221ES308-16 *AWS A5.4 E308-16

For 18%Cr-8%Ni Stainless steel

APPLICATIONS

Welding of 18%Cr-8%Ni austenitic stainless steel for chemical apparatus, containers and plants.

CHARACTERISTICS

S-308 R is a lime-titania type stainless steel electrode depositing 19%Cr-9%Ni metal. Slag is easy to remove, arc is stable, spatters are few and bead appearance is beautiful.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 150~250°C for 60 minutes before use.
- 2. Dirt such as oil, grease and dust should be completely removed from groove.
- 3. Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

WELDING POSITION

S-308L·R

JIS Z 3221 ES308L-16 *AWS A5.4 E308L-16

For Low Carbon 18%Cr - 8%Ni Stainless Steel

APPLICATIONS

Welding of SUS304L type austenitic stainless steel.

CHARACTERISTICS

S-308L R is a Low Carbon-19%Cr-9%Ni covered electrode

GUIDELINES FOR USAGE

- 1. Welding is operated in either AC or DC electrode positive polarity.
- 2. Electrodes should be dried at 150~250°C for 60 minutes before use.
- 3. Dirt such as oil, grease and dust should be completely removed from groove.
- 4. Preheat is not necessary, interpass temperature should be less than 150°C
- 5. Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

WELDING POSITION

С

Si

206

SMAW

g

Cu

0.02

Other

Identification color: End-Red

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| C | S1 | Mn | P | S | N1 | Cr | |
|------|------|------|-------|-------|-----|------|--|
| 0.05 | 0.36 | 1.35 | 0.020 | 0.008 | 9.8 | 19.2 | |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Tensile Strength,
MPa | Elongation,
% | Creep ⁻ rupture Strength
(as welded,650°C×1,000h),
MPa |
|--------------------------|------------------|---|
| 610 | 42 | 130 |

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

| Diameter (mm) | | 2.0 | 2.6 | 3.2 | 4.0 | 5.0 |
|---------------|----------|--------------|--------------|---------------|----------------|----------------|
| Length (mm) | | 250 | 300 | 350 | 350 | 350 |
| Current | F | $45 \sim 65$ | $55 \sim 95$ | $75 \sim 125$ | $100 \sim 160$ | $150 \sim 220$ |
| А | V-up, OH | 40~60 | $50 \sim 85$ | $65 \sim 105$ | $85 \sim 135$ | — |

Identification color: End-yellow, secondary-yellow

0.03

Mn Р Mo \mathbf{Cr} 0.280.034 0.007 9.80 19.000.021.55

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

S

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at 0°C,
J |
|------------------------|--------------------------|------------------|---------------------------------|
| 385 | 548 | 47 | 95 |

Ni

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

| | | | | | - 1 1 | |
|---------------|--------------|--------------|--------------|--------|---------|---------|
| Diameter (mm) | | 2.0 | 2.6 | 3.2 | 4.0 | 5.0 |
| Length (| mm) | 250 | 300 | 350 | 350 | 350 |
| Current | F / H-fillet | $45 \sim 50$ | $55 \sim 70$ | 80~100 | 110~140 | 140~170 |
| А | V-up, OH | 35~45 | $45 \sim 65$ | 70~80 | 100~130 | _ |

S-309·R

For 22%Cr-12%Ni Staintess Steel and Dissimilar Metal

APPLICATIONS

Welding of 22%Cr-12%Ni stainless steel, dissimilar metals such as 18% Cr-8%Ni stainless steel to mild steel or low allow steel, 18%Cr-8%Ni stainless clad steel. and the parts of hardenable steel for which post-heat treatment is impossible, for petroleum, chemical and textile industries.

CHARACTERISTICS

S-309 R is a lime-titania type stainless steel electrode, 25% Cr-12% Ni weld metal shows extremely high crack resistance due to its high ferrite content.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 150~250°C for 60 minutes before use.
- 2. Dirt such as oil, grease and dust should be completely removed from groove.
- 3. Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

Р

0.020

S

0.006

 $710 \sim 125$

 $65 \sim 105$

Ni

13.2

Creep-rupture Strength

(as welded,650°C×1.000h).

MPa

 $100 \sim 160$

 $85 \sim 135$

 \mathbf{Cr}

24.2

5.0

350

 $150 \sim 220$

_

WELDING POSITION

С

0.06

Current А

S-309L·R

JIS Z 3221 ES309L-16 *AWS A5.4 E309L-16

For Dissimilar Metal such as Stainless Steel and Mild Steel

APPLICATIONS

Welding of clad side of SUS304 class clad steel. Welding of dissimilar metal such as SUS304 type stainless steel.

CHARACTERISTICS

S-309L R is a Low Carbon-24%Cr-13%Ni covered electrode

GUIDELINES FOR USAGE

- 1. Welding is operated in either AC or DC electrode positive polarity.
- 2. Electrodes should be dried at 150~250°C for 60 minutes before use.
- 3. Dirt such as oil, grease and dust should be completely removed from groove.
- 4. Preheat is not necessary, interpass temperature should be less than 150°C
- 5. Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

WELDING POSITION

С

0.03

Si

0.37

Yield Strength.

MPa

445

Mn

1.52

37 120 590■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)> Diameter (mm) 2.03.22.64.0350 Length (mm) 250300 350

 $45 \sim 65$

 $40 \sim 60$

Elongation,

%

 $55 \sim 95$

 $50 \sim 85$

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

Mn

1.51

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

WELDREAM

SMAW

F

Si

0.33

Tensile Strength.

MPa

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

S

0.008

Ni

13.0

 \mathbf{Cr}

24.4

Elongation.

%

36

Mo

0.09

Cu

0.09

Charpy 2V-notch

at 0°C.

J

88

Other

Р

0.020

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Tensile Strength.

MPa

582

| | | 1 |
|---------|----------------------|--|
| 3.2 4.0 | | 5.0 |
| 350 | 350 | 350 |
| 80~100 | 110~140 | $140 \sim 170$ |
| 70~80 | 100~130 | — |
| | 3.2
350
80~100 | 3.2 4.0 350 350 80~100 110~140 |

Indentification color : End-vellow green, secondary-blue

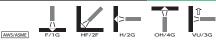
S-309ML·R

*AWS A5.4 E309LMo-16

For Dissimilar Metal such as SUS316L type Stainless Steel and Mild Steel

APPLICATIONS

Welding of clad side of SUS316L class clad steel. Welding of dissimilar metal such as SUS316L type stainless steel.


CHARACTERISTICS

S-309ML/R is a Low Carbon-23%Cr-13%Ni-2%Mo_covered electrode

GUIDELINES FOR USAGE

- 1. Welding is operated in either AC or DC electrode positive polarity.
- 2. Electrodes should be dried at 150~250°C for 60 minutes before use.
- 3. Dirt such as oil, grease and dust should be completely removed from groove.
- 4. Preheat is not necessary, interpass temperature should be less than 150°C
- 5. Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

WELDING POSITION

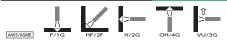
S-316L·R

JIS Z 3221 ES316L-16 *AWS A5.4 E316L-16

For Low Carbon 18%Cr - 12%Ni - 2%Mo Stainless Steel

APPLICATIONS

Welding of SUS316L type austenitic stainless steel.


CHARACTERISTICS

S-316L R is a Low Carbon-18%Cr-12%Ni-2%Mo covered electrode

GUIDELINES FOR USAGE

- 1) Welding is operated in either AC or DC electrode positive polarity.
- 2) Electrodes should be dried at 150~250°C for 60 minutes before use.
- 3) Dirt such as oil, grease and dust should be completely removed from groove.
- 4) Preheat is not necessary, interpass temperature should be less than 150°C
- 5) Excessively wide weaving may cause welding defects. Keep weaving width to less than 2.5 times electrode diameter. Arc length should be kept as short as possible.

WELDING POSITION

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Р | S | Ni | Cr | Mo | Other | | | |
|------|------|------|-------|-------|------|------|------|-------|--|--|--|
| 0.03 | 0.32 | 1.80 | 0.024 | 0.013 | 13.2 | 22.7 | 2.40 | — | | | |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Tensile Strength, | Elongation, |
|-------------------|-------------|
| MPa | % |
| 600 | 34 |

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

| Diameter | (mm) | 2.6 | 3.2 | 4.0 | 5.0 |
|-------------|--------------|--------------|--------|---------|----------------|
| Length (mm) | | 300 | 350 | 350 | 350 |
| Current | F / H-fillet | $55 \sim 70$ | 80~100 | 110~140 | $140 \sim 170$ |
| А | V-up, OH | 45~60 | 70~80 | 100~130 | — |

Indentification color : End-Silver, secondary-red

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| | | | | | | | 1 101 | | |
|------|------|------|-------|-------|-------|-------|-------|------|-------|
| С | Si | Mn | Р | S | Ni | Cr | Cu | Mo | Other |
| 0.03 | 0.46 | 1.42 | 0.026 | 0.011 | 12.40 | 19.30 | 0.02 | 2.12 | — |

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at 0°C,
J |
|------------------------|--------------------------|------------------|---------------------------------|
| 436 | 580 | 38 | 98 |

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

| | Diameter (mm)
Length (mm) | | 2.0 | 2.6 | 3.2 | 4.0 | 5.0 |
|--|------------------------------|--------------|-------|--------------|--------|---------|---------|
| | | | 250 | 300 | 350 | 350 | 350 |
| | Current | F / H-fillet | 40~50 | $55 \sim 70$ | 80~100 | 110~140 | 140~170 |
| | А | V-up, OH | 35~45 | $45 \sim 65$ | 70~80 | 100~130 | — |

Indentification color : End-green

VELDREAM

Covered Arc Welding Electrodes for Stainless Steel

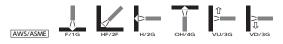
| | | | | _ | | | | |
|------------|------------------------|--------------------|------|---------------------------------|--|---------------------|------------|--|
| Brand Name | Specif | ication | | Dia.
mm | Application and Characteristics | | | |
| | JIS | AWS | | mm | | | | |
| S-309M•R | Z 3221 ES-
309Mo-16 | ☆A5.4
E309Mo•16 | | 2.6
3.2
4.0
5.0 | Welding of dissimilar metals such as 18%
12%Ni-2%Mo stainless steel to mild steel | | | |
| | Welding Position | AWS/ASME | F/1G | HF/ | 2F H/2G | 2F H/2G OH/4G VU/3G | | |
| S-310•R | Z 3221 ES310-16 | ☆A5.4 E31(| 0-16 | 2.0
2.6
3.2
4.0
5.0 | Welding of S | US310 | | |
| | Welding Position | AWS/ASME | F/1G | HF/ | 2F H/2G | OH/4G | VU/3G | |
| S-316•R | Z 3221 ES316-16 | ☆A5.4 E31 | 6-16 | 2.0
2.6
3.2
4.0
5.0 | Welding of S | US316 | | |
| | Welding Position | AWS/ASME | F/1G | HF/ | 2F H/2G | OH/4G | VU/3G | |
| S-316LN•R | _ | _ | | 2.6
3.2
4.0
5.0 | Welding of S | US316LN | | |
| | Welding Position | AWS/ASME | F/1G | HF/ | 2F H/2G | OH/4G | VU/3G | |
| S-316CL•R | Z 3221 ES316LCu-16 | _ | | 2.6
3.2
4.0
5.0 | Welding of S | US316J1I | | |
| | Welding Position | AWS/ASME | F/1G | HF/ | 2F H/2G | OH/4G | VU/3G | |
| S-317L•R | Z 3221 ES317L-16 | ☆A5.4 E317 | L-16 | 2.6
3.2
4.0
5.0 | Welding of S | US317L | | |
| | Welding Position | AWS/ASME | F/1G | HF/ | 2F H/2G | OH/4G | VU/3G | |
| S-347•R | Z 3221 ES347-16 | ☆A5.4 E34′ | 7-16 | 2.6
3.2
4.0
5.0 | Welding of S | US321 or | 347 | |
| | Welding Position | AWS/ASME | F/1G | HF/ | 2F H/2G | OH/4G | VU/3G | |
| S-347L•R | Z 3221 ES347L-16 | ☆A5.4 E34′ | 7-16 | 2.6
3.2
4.0 | Welding of lo | ow-C type | for SUS347 | |
| 5 347L R | | | | 5.0 | | | | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typical chemical compositions of weld metal (%) | | | | | | | |
|------|---|------|------|------|------|----------|------------|----------|
| С | Si | Mn | Ni | Cr | Mo | Other | TS,
MPa | El,
% |
| 0.08 | 0.41 | 1.68 | 13.2 | 24.1 | 2.51 | | 650 | 34 |
| 0.07 | 0.41 | 1.93 | 21.3 | 26.0 | _ | _ | 570 | 36 |
| 0.05 | 0.33 | 1.48 | 12.9 | 18.3 | 2.35 | _ | 590 | 37 |
| 0.02 | 0.38 | 1.54 | 11.9 | 19.2 | 2.3 | N: 0.15 | 610 | 39 |
| 0.03 | 0.33 | 1.61 | 13.7 | 18.5 | 2.40 | Cu: 1.60 | 570 | 36 |
| 0.03 | 0.46 | 1.77 | 13.2 | 19.7 | 3.26 | | 610 | 35 |
| 0.05 | 0.37 | 1.58 | 9.7 | 20.4 | _ | Nb: 0.68 | 670 | 38 |
| 0.03 | 0.78 | 1.61 | 10.2 | 19.3 | | Nb: 0.40 | 590 | 39 |

g

212


SMAW

g

Covered Arc Welding Electrodes for Stainless Steel

| Brand Name | Specif | ication | Dia.
mm | Application and Characteristics |
|------------|--------------------|-----------------|--------------------------|--|
| | JIS | AWS | | |
| S-347AP•R | _ | _ | 2.6
3.2
4.0
5.0 | Welding of pipe for 347AP |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G OH/4G VU/3G |
| S-170 | _ | _ | 2.6
3.2
4.0
5.0 | Welding of NSSC™170, YUS170 |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G OH/4G VU/3G |
| S-2120 • R | _ | _ | 3.2
4.0 | UNS S82122, S32101 Lean Duplex Stainless
steel |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G VU/3G |
| S-DP8 | Z 3221 ES2209-16 | ☆A5.4 E2209-16 | 2.6
3.2
4.0 | Welding of SUS329J3L, NSSC DX1, DP8
and UNS S31803 duplex stainless steel |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G OH/4G VU/3G |
| S-DP3 | Z 3221 ES329J4L-16 | _ | 2.6
3.2
4.0 | Welding of SUS329J4L, DP3 and UNS
S31260 duplex stainless steel |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G OH/4G VU/3G |
| S-DP3W | _ | _ | 2.6
3.2
4.0 | Welding of DP3W for super duplex stainless steel |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F |
| S-410Nb | Z 3221 ES409Nb-16 | ☆A5.4 E419Nb-16 | 2.6
3.2
4.0
5.0 | Welding of SUS403, 405 and 410 |
| | Welding Position | AWS/ASME F/1G | HF/ | /2F H/2G OH/4G VU/3G |
| S-430Nb | Z 3221 ES430Nb-16 | ★A5.4 E430-16 | 2.6
3.2
4.0
5.0 | Welding of SUS430 |
| | Welding Position | AWS/ASME F/1G | HF/ | 2F H/2G OH/4G VU/3G |
| | h. | 1 | | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

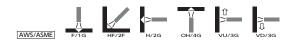
| | Typical mechanical
properties of weld
metal | | | | | | | |
|------|---|------|------|------|------|--|------------|------------------|
| С | Si | Mn | Ni | Cr | Mo | Other | TS,
MPa | El,
% |
| 0.05 | 0.56 | 1.40 | 9.6 | 19.7 | _ | Nb: 0.34
N: 0.10 | 670 | 38 |
| 0.04 | 0.69 | 1.73 | 14.5 | 24.8 | 0.75 | N: 0.28 | 760 | 36 |
| 0.03 | 0.31 | 0.78 | 9.1 | 25.5 | 0.67 | N: 0.14 | 800 | 26 |
| 0.03 | 0.41 | 0.96 | 8.6 | 23.0 | 3.09 | N: 0.18
PRE: 36 ¹⁾ | 830 | 28 |
| 0.04 | 0.42 | 0.80 | 8.8 | 25.4 | 3.14 | Cu: 0.49
W: 0.28
N: 0.15
PREW: 39 ²⁾ | 850 | 20 |
| 0.04 | 0.34 | 0.78 | 8.8 | 25.4 | 3.07 | Cu: 0.46
W: 2.07
N: 0.25
PREW: 43 ²⁰ | 960 | 23 |
| 0.06 | 0.38 | 0.40 | _ | 13.2 | _ | Nb: 0.87 | $520^{3)}$ | 28^{3} |
| 0.07 | 0.38 | 0.56 | _ | 16.8 | | Nb: 0.85 | 530^{3} | 29 ³⁾ |

Note : 1) PRE = Cr+3.3Mo+16N 2) PREW = Cr+3.3 (Mo+0.5W) +16N

3) PWHT conditions
 S-410Nb PWHT: 850°C×2h; S-430Nb PWHT; 770°C×2h

SMAW

g


SMAW

g

Submerged Arc Welding Materials for Stainless Steel

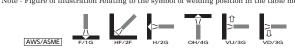
| Brand Name | Specif | ication | Application and Characteristics | |
|------------------------------------|------------------|---------------|---|--|
| Brand Name | JIS | AWS | Application and Characteristics | |
| Y-308 × BF-300M | ☆Z 3324 YWS308 | ☆A5.9 ER308 | Welding of SUS304 | |
| 1 308 × DF 300M | Welding Position | AWS/ASME F/1G | HF/2F | |
| Y-308L × BF-300M | ☆Z 3324 YWS308L | ☆A5.9 ER308L | Welding of SUS304L | |
| 1 200L × BF 200M | Welding Position | AWS/ASME F/1G | HF/2F | |
| Y-304N × BF-308N2 | _ | _ | Welding of SUS304N2 | |
| 1 504IN × DF 506IN2 | Welding Position | AWS/ASME F/1G | HF/2F | |
| Y-309 × BF-300M | ☆Z 3324 YWS309 | ☆A5.9 ER309 | 25% Cr-12% Ni weld metal shows
extremely high crack resistance due
to its high ferrite content. | |
| | Welding Position | AWS/ASME F/1G | HF/2F | |
| Y-309 × BF-300F | ☆Z 3324 YWS309 | ☆A5.9 ER309 | | |
| 1005 ~ D1 0001 | Welding Position | AWS/ASME F/1G | HF/2F | |
| Y-316 × BF-300M | ☆Z 3324 YWS316 | ☆A5.9 ER316 | Welding of SUS316 | |
| $\text{Y-316}\times\text{BF-300F}$ | Welding Position | AWS/ASME F/1G | HF/2F | |
| Y-316L × BF-300M | ☆Z 3324 YWS316L | ☆A5.9 ER316L | Welding of SUS316L | |
| $Y-316L\times BF-300F$ | Welding Position | AWS/ASME F/1G | HF/2F | |
| V 045 v DE 000M | ☆Z 3324 YWS347 | ☆A5.9 ER347 | Welding of SUS347 | |
| $Y-347 \times BF-300M$ | Welding Position | AWS/ASME F/1G | HF/2F | |
| Y-170 × BF-300M | _ | _ | Welding of YUS170 | |
| 1 110 ~ DF-900M | Welding Position | AWS/ASME F/1G | HF/2F | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Турі | Typical mechanical prop-
erties of weld metal | | | | | | |
|------|------|--|------|------|------|---------------------|------------|-----------|
| С | Si | Mn | Ni | Cr | Mo | Other | TS,
MPa | El,
% |
| 0.05 | 0.48 | 1.95 | 9.4 | 20.4 | _ | _ | 570 | 45 |
| 0.03 | 0.47 | 1.93 | 10.8 | 19.7 | _ | _ | 550 | 41 |
| 0.07 | 0.85 | 3.20 | 8.0 | 22.7 | _ | Nb: 0.09
N: 0.18 | 715 | 37 |
| 0.06 | 0.45 | 1.64 | 13.5 | 24.0 | | _ | 590 | 38 |
| 0.06 | 0.49 | 1.46 | 9.8 | 21.7 | _ | _ | 640 | 44 |
| 0.05 | 0.55 | 1.68 | 12.6 | 19.8 | 2.25 | _ | 600 | butt weld |
| 0.03 | 0.53 | 1.60 | 13.3 | 19.7 | 2.29 | _ | 570 | 40 |
| 0.05 | 0.55 | 1.82 | 10.1 | 19.9 | _ | Nb: 0.65 | 590 | 38 |
| 0.05 | 0.99 | 1.68 | 12.6 | 25.4 | 0.81 | N: 0.28 | 740 | 51 |

g

WELDREAM


SAW

g

Submerged Arc Welding Materials for Stainless Steel

| Brand Name | Specif | ication | Application and Changetonistics | |
|----------------------------------|--|---------------|--|--|
| Brand Name | JIS | AWS | Application and Characteristics | |
| Y-DP8 × BF-30 | _ | _ | Welding of SUS329J3L | |
| | Welding Position | AWS/ASME F/1G | HF/2F | |
| | | | | |
| V DD0 × DE 00 | _ | _ | Welding of SUS329J4L or NAR-DP3 | |
| Y-DP3 × BF-30 | —
Welding Position | | Welding of SUS329J4L or NAR-DP3
HF/2F | |
| Y-DP3 × BF-30
Y-410 × BF-300M | —
Welding Position
☆Z 3324
YWS410 | | | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typical chemical compositions of weld metal (%) | | | | | | | | hanical prop-
weld metal |
|-----|---|------|------|-----|------|------|--------------------------------|------------|-----------------------------|
| C | | Si | Mn | Ni | Cr | Mo | Other | TS,
MPa | El,
% |
| 0.0 | 4 | 0.63 | 0.81 | 8.2 | 22.4 | 3.05 | N: 0.11 | 790 | 30 |
| 0.0 | 13 | 0.50 | 0.68 | 8.8 | 24.9 | 2.99 | Cu: 0.47
W: 0.28
N: 0.14 | 800 | 28 |
| 0.0 | 4 | 0.56 | 0.83 | _ | 13.4 | _ | _ | 490* | 32* |

Note : *PWHT condition; Y-410 × BF300M; 730°C×2h

218

YM-308

*JIS Z 3321 YS308 *AWS A5.9 ER308

For 18%Cr-8%Ni Stainless Steel

APPLICATIONS

Welding of 18%Cr-8%Ni Stainless Steel for chemical engineering and food processing apparatus.

CHARACTERISTICS

YM-308 is a gas metal arc welding wire to be used with Ar+0.5~2%O₂ shield gas. Arc is stable, bead appearance is beautiful with outstanding edge wetting and weldability is satisfactory. 19%Cr-9%Ni weld metal contains an adequate amount of ferrite and shows excellent resistance to hot cracking.

GUIDELINES FOR USAGE

When high X-ray quality is required, stable spray transfer mode should be maintained with low current and slow welding speed using a pulsed arc power source.

WELDING POSITION

*JIS Z 3321 YS309 *AWS A5.9 ER309

For 22%Cr-12%Ni Stainless Steel and Dissimilar Metal

APPLICATIONS

Welding of 22%Cr-12%Ni stainless steel for petroleum, chemical engineering and textile industries, 18%Cr-8%Ni stainless clad steel and dissimilar metals such as mild steel to stainless steel.

CHARACTERISTICS

YM-309 is a gas metal arc welding wire to be used with $Ar+0.5\sim 2\% O_2$ shield gas. Arc is stable, bead appearance is beautiful with outstanding edge wetting and weldability is satisfactory. 24%Cr-13%Ni weld metal contains an adequate amount of ferrite and shows excellent resistance to hot cracking.

GUIDELINES FOR USAGE

- 1. When high X-ray quality is required, stable spray transfer mode should be maintained with low current and slow welding speed using a pulsed arc power source.
- 2. In the welding of dissimilar metals, excessive dilution deteriorates crack and corrosion resistance. Care should be taken for the penetration to base metal.

WELDING POSITION

~

| TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%) | | | | | | | | |
|--|-------------------|--|--|--|--|--|--|--|
| С | C Si Mn P S Ni Cr | | | | | | | |
| 0.05 0.35 1.74 0.021 0.007 13.3 23.6 | | | | | | | | |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Tensile Strength, | Elongation, |
|-------------------|-------------|
| MPa | % |
| 620 | 32 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Diameter (mm) | 1.0 | 1.2 | 1.6 |
|---------------|--------|----------------|---------|
| Current (A) | 70~300 | $100 \sim 350$ | 120~350 |

| С | Si | Mn | Р | S | Ni | Cr |
|------|------|------|-------|-------|-----|------|
| 0.04 | 0.34 | 1.92 | 0.019 | 0.002 | 9.6 | 19.9 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Tensile Strength, | Elongation, |
|-------------------|-------------|
| MPa | % |
| 620 | 42 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Diameter (mm) | 1.0 | 1.2 | 1.6 |
|---------------|--------|----------------|----------------|
| Current (A) | 70~300 | $100 \sim 350$ | $120 \sim 350$ |

WELDREAM

GMAW

YM-316

- -

For 18%Cr-12%Ni-2%Mo Stainless steel

APPLICATIONS

Welding of $18\% {\rm Cr}\mathchar`12\% {\rm Mo}$ Stainless Steel for chemical engineering and power plants.

CHARACTERISTICS

YM-316 is a gas metal arc welding wire to be used with Ar+0.5~2% $\rm O_{_2}$ shield gas. Arc is stable, bead appearance is beautiful with outstanding edge wetting and weldability is satisfactory. 18%Cr-12%Ni-2%Mo weld metal contains an adequate amount of ferrite and shows excellent resistance to hot cracking.

GUIDELINES FOR USAGE

When high X-ray quality is required, stable spray transfer mode should be maintained with low current and slow welding speed using a pulsed arc power source.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

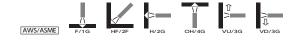
| С | Si | Mn | Р | S | Ni | Cr | Mo |
|------|------|------|-------|-------|------|------|------|
| 0.04 | 0.40 | 1.48 | 0.020 | 0.019 | 13.5 | 18.8 | 2.70 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Tensile Strength, | Elongation, |
|-------------------|-------------|
| MPa | % |
| 580 | 32 |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Diameter (mm) | 1.0 | 1.2 | 1.6 |
|---------------|--------|----------------|----------------|
| Current (A) | 70~300 | $100 \sim 350$ | $120 \sim 350$ |


|
 |
|------|
|
 |

g

Gas Metal Arc Welding wires for Stainless Steel

| Brand Name | Specif | ication | Dia. | |
|------------|-----------------------|----------------|--|---|
| Brand Name | JIS | AWS | mm | Application and Characteristics |
| YM-308L | ☆Z 3321 YS308L | ☆A5.9 ER308L | $1.0 \\ 1.2 \\ 1.6$ | Weld metal shows excellent impact values
and sufficient strngth and toughness as
welded and after stress relieving annealing. |
| | Welding Position | AWS/ASME F/1G | HF | F/2F |
| YM-308LSi | ☆Z 3321 YS308L-
Si | ☆A5.9 ER308LSi | $ \begin{array}{c} 1.0 \\ 1.2 \\ 1.6 \end{array} $ | Weld metal shows excellent impact values
and sufficient strngth and toughness as
welded and after stress relieving annealing. |
| | Welding Position | AWS/ASME F/1G | HF | F/2F |
| YM-308UL | ☆Z 3321 YS308L | ☆A5.9 ER308L | $1.0 \\ 1.2 \\ 1.6$ | Welding of ultra low C type for SUS304L |
| | Welding Position | AWS/ASME F/1G | HF | 5/2F |
| YM-309L | ☆Z 3321 YS309L | ☆A5.9 ER309L | $1.0 \\ 1.2 \\ 1.6$ | Low C type of YM-309 |
| | Welding Position | AWS/ASME F/1G | HF | 5/2F |
| YM-309LSi | ☆Z 3321 YS309L-
Si | ☆A5.9 ER309LSi | $1.0 \\ 1.2 \\ 1.6$ | Low C and high Si type of YM-309 |
| | Welding Position | AWS/ASME F/1G | HF | F/2F |
| YM-309Mo | ☆Z 3321
YS309Mo | ☆A5.9 ER309Mo | 1.0
1.2
1.6 | Welding of dissimilar metals such as 18%Cr
12%Ni-2%Mo stainless steel to mild steel |
| | Welding Position | AWS/ASME F/1G | HF | F/2F |
| YM-309MoL | ☆Z 3321 YS309LMo | ☆A5.9 ER309LMo | 1.0
1.2
1.6 | Welding of dissimilar metals such as 18%Cr
12%Ni-2%Mo stainless steel to mild steel |
| | Welding Position | AWS/ASME F/1G | HF | 5/2F |
| YM-310 | ☆Z 3321 YS310 | ☆A5.9 ER310 | $1.0 \\ 1.2 \\ 1.6$ | Welding of SUS310 |
| | Welding Position | AWS/ASME F/1G | HF | 5/2F |
| YM-316L | ☆Z 3321 YS316L | ☆A5.9 ER316L | $1.0 \\ 1.2 \\ 1.6$ | Welding of SUS316L |
| | Welding Position | AWS/ASME F/1G | HF | F/2F |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typical o | hemical co | Typical mechanical properties of weld
metal | | | | | | |
|-------|-----------|------------|--|------|-----|-------|------------|----------|------|
| С | Si | Mn | Ni | Cr | Mo | Other | TS,
MPa | El,
% | PWHT |
| 0.03 | 0.32 | 1.63 | 10.3 | 20.7 | _ | _ | 600 | 43 | _ |
| 0.02 | 0.79 | 1.96 | 9.8 | 19.7 | _ | _ | 560 | 40 | _ |
| 0.016 | 0.42 | 1.51 | 10.3 | 20.5 | _ | _ | 520 | 55 | _ |
| 0.01 | 0.37 | 1.78 | 13.7 | 23.2 | _ | _ | 580 | 36 | _ |
| 0.02 | 0.82 | 1.81 | 13.0 | 23.7 | _ | _ | 600 | 33 | _ |
| 0.10 | 0.38 | 2.13 | 13.7 | 23.2 | 2.2 | _ | 640 | 38 | _ |
| 0.01 | 0.35 | 1.67 | 13.9 | 23.7 | 2.2 | _ | 630 | 39 | _ |
| 0.05 | 0.33 | 1.52 | 21.4 | 26.1 | _ | _ | 590 | 41 | _ |
| 0.03 | 0.39 | 1.58 | 12.7 | 19.2 | 2.3 | _ | 570 | 43 | _ |

GMAW

g

Gas Metal Arc Welding wires for Stainless Steel

| Brand Name | Specif | ication | Dia. | | |
|------------|-----------------------|----------------|---------------------|--|--|
| Brand Name | JIS | AWS | mm | Application and Characteristics | |
| YM-316LSi | ☆Z 3321 YS316L-
Si | ☆A5.9 ER316LSi | 1.0
1.2
1.6 | High Si type of YM-316L | |
| | Welding Position | AWS/ASME F/10 | i HF | =/2F | |
| YM-316UL | ☆Z 3321 YS316L | ☆A5.9 ER316L | 1.0
1.2
1.6 | Ultra low C type of YM-316L | |
| | Welding Position | AWS/ASME F/10 | i HF | 5/2F | |
| YM-317L | ☆Z 3321 YS317L | ☆A5.9 ER317L | 1.0
1.2
1.6 | Welding of SUS317L | |
| | Welding Position | AWS/ASME F/10 | i HF | 5/2F | |
| YM-347 | ☆Z 3321 YS347 | ☆A5.9 ER347 | $1.0 \\ 1.2 \\ 1.6$ | Welding of SUS321 and SUS347 | |
| | Welding Position | AWS/ASME F/10 | i HF | 5/2F | |
| YM-347L | ☆Z 3321 YS347L | ☆A5.9 ER347 | 1.0
1.2
1.6 | Low C type of YM-347 | |
| | Welding Position | AWS/ASME F/10 | i HF | F/2F | |
| YM-190 | _ | _ | 0.8
1.0
1.2 | Welding of NSSC™190 and YUS190
(SUS444) | |
| | Welding Position | AWS/ASME F/10 | i HF | F/2F | |
| YM-410 | ☆Z 3321 YS410 | ☆A5.9 ER410 | 1.2
1.6 | Welding of SUS410 | |
| | Welding Position | AWS/ASME F/10 | i HF | F/2F | |
| YM-430L | ☆Z 3321 YS430 | ☆A5.9 ER430 | 1.2
1.6 | Welding of SUS430 and SUS405 | |
| | Welding Position | AWS/ASME F/10 | i HF | F/2F | |
| | ☆Z 3321 YS430L- | | 1.0
1.2 | Welding of SUS430 and SUS405 | |
| YM-160 | Nb | | 1.6 | Weiding of 505450 and 505405 | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

↓> H/2G

HF/2F

/\ F/1G

AWS/ASME

U OH/4G

| | Typical c | hemical co | Typical | me | l properties of weld
etal | | | | |
|-------|-----------|------------|---------|------|------------------------------|----------------------|------------|----------|----------|
| С | Si | Mn | Ni | Cr | Mo | Other | TS,
MPa | El,
% | PWHT |
| 0.02 | 0.73 | 1.79 | 12.0 | 19.3 | 2.4 | _ | 580 | 44 | _ |
| 0.015 | 0.49 | 1.32 | 12.8 | 18.9 | 2.6 | _ | 540 | 50 | _ |
| 0.02 | 0.40 | 1.55 | 14.3 | 19.8 | 3.4 | _ | 630 | 38 | _ |
| 0.05 | 0.34 | 1.50 | 10.1 | 19.0 | _ | Nb: 0.69 | 630 | 40 | _ |
| 0.03 | 0.35 | 1.46 | 9.5 | 19.0 | _ | Nb: 0.65 | 610 | 42 | _ |
| 0.009 | 0.10 | 0.16 | _ | 18.8 | 1.97 | Ti: 0.12
Nb: 0.30 | 480 | 13 | _ |
| 0.05 | 0.36 | 0.30 | _ | 12.8 | _ | _ | 570 | 33 | 850°C×2h |
| 0.020 | 0.32 | 0.28 | _ | 16.2 | _ | _ | 540 | 26 | 760°C×2h |
| 0.010 | 0.28 | 0.24 | _ | 16.0 | _ | Nb: 0.43
Cu: 0.3 | 470 | 25 | 770°C×2h |

GMAW

g

Typical mechanical properties of weld

227

GMAW

g

YT-308L

*JIS Z 3321 YS308L *AWS A5.9 ER308L

For Low Carbon 18%Cr-8%Ni Stainless Steel

APPLICATIONS

Welding of SUS304L type austenitic stainless steel.

CHARACTERISTICS

YT-308L is a Low Carbon-20%Cr-10%Ni wire rod for GTAW

GUIDELINES FOR USAGE

- 1. Pure Argon gas is used for shielding.
- 2. Remove grease and oil from weld zone.
- 3. Avoid excessive heat input in order to obtaining good corrosion resistance with welds.
- 4. Preheat is not necessary, and interpass temperature should be less than $150^{\circ}\mathrm{C}.$

WELDING POSITION

YT-309L

*JIS Z 3321 YS309L *AWS A5.9 ER309L

For Dissimilar Metal such as Stainless Steel and Mild Steel

APPLICATIONS

Welding of clad side of SUS304 class clad steel. Welding of dissimilar metal such as SUS304 type stainless steel.

CHARACTERISTICS

YT-309L is a Low Carbon-24%Cr-13%Ni wire rod for GTAW

GUIDELINES FOR USAGE


- 1. Pure Argon gas is used for shielding
- 2. Remove grease and oil from weld zone.
- 3. Avoid excessive heat input in order to obtaining good corrosion resistance with welds.
- 4. Preheat is not necessary, and interpass temperature should be less than $150^{\circ}\mathrm{C}.$

WELDING POSITION

SIZES

Dia.(mm)

Length of Filler Rod (mm)

GTAW

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Р | S | Ni | Cr | Other |
|------|------|------|-------|-------|------|-------|-------|
| 0.02 | 0.40 | 1.65 | 0.023 | 0.000 | 9.74 | 19.30 | _ |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength, | Tensile Strength, | Elongation, |
|-----------------|-------------------|-------------|
| MPa | MPa | % |
| 420 | 563 | 43 |

SIZES

| Dia.(mm) | 1.0 | 1.2 | 1.6 | 2.0 | 2.4 |
|---------------------------|------|------|------|------|------|
| Length of Filler Rod (mm) | 1000 | 1000 | 1000 | 1000 | 1000 |
| Weight of Spool wire (kg) | — | 12.5 | — | — | _ |

GTAW

g

WELDREAM

| 2.4 |
|------|
| 1000 |

2.0

1000

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| | | | | | | | 1.1.1 | | |
|------|------|------|-------|-------|------|------|-------|------|-------|
| С | Si | Mn | Р | S | Ni | Cr | Mo | Cu | Other |
| 0.01 | 0.45 | 1.62 | 0.024 | 0.002 | 13.7 | 23.1 | 0.05 | 0.08 | _ |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

1.0

1000

| Yield Strength, | Tensile Strength, | Elongation, |
|-----------------|-------------------|-------------|
| MPa | MPa | % |
| 380 | 585 | |

1.2

1000

1.6

YT-309MoL

*JIS Z 3321 YS309LMo *AWS A5.9 ER309LMo

For Dissimilar Metal such as SUS316L type Stainless Steel and Mild Steel

APPLICATIONS

Welding of clad side of SUS316L class clad steel. Welding of dissimilar metal such as SUS316L type stainless steel.

CHARACTERISTICS

YT-309MoL is a Low Carbon-23%Cr-13%Ni-2%Mo wire rod for GTAW

GUIDELINES FOR USAGE

- 1. Pure Argon gas is used for shielding.
- 2. Remove grease and oil from weld zone.
- 3. Avoid excessive heat input in order to obtaining good corrosion resistance with welds.
- 4. Preheat is not necessary, and interpass temperature should be less than $150^{\circ}\mathrm{C}.$

WELDING POSITION

YT-316L

*JIS Z 3321 YS316L *AWS A5.9 ER316L

For Low Carbon 18%Cr - 12%Ni - 2%Mo Stainless Steel

APPLICATIONS

Welding of SUS316L type austenitic stainless steel.

CHARACTERISTICS

YT-316L is a Low Carbon-18%Cr-12%Ni-2%Mo wire rod for GTAW

GUIDELINES FOR USAGE

- 1. Pure Argon gas is used for shielding.
- 2. Remove grease and oil from weld zone.
- 3. Avoid excessive heat input in order to obtaining good corrosion resistance with welds.
- 4. Preheat is not necessary, and interpass temperature should be less than $150^{\circ}\mathrm{C}.$

WELDING POSITION

GTAW

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Ni | \mathbf{Cr} | Mo | Other |
|------|------|------|------|---------------|-----|-------|
| 0.02 | 0.45 | 1.52 | 13.6 | 23.0 | 2.1 | — |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength, | Tensile Strength, | Elongation, |
|-----------------|-------------------|-------------|
| MPa | MPa | % |
| — | 670 | 34 |

SIZES

| Dia.(mm) | 0.9 | 1.0 | 1.2 | 1.6 | 2.0 | 2.4 |
|---------------------------|-----|------|------|------|------|------|
| Length of Filler Rod (mm) | — | — | 1000 | 1000 | 1000 | 1000 |
| Weight of Spool wire (kg) | 5 | 12.5 | — | — | — | — |

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Ni | Cr | Mo | Other |
|------|------|------|------|------|-----|-------|
| 0.02 | 0.40 | 1.52 | 12.1 | 18.3 | 2.4 | — |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength, | Tensile Strength, | Elongation, |
|-----------------|-------------------|-------------|
| MPa | MPa | % |
| - | 590 | 37 |

SIZES

| Dia.(mm) | 1.0 | 1.2 | 1.6 | 2.0 | 2.4 |
|---------------------------|------|------|------|------|------|
| Length of Filler Rod (mm) | 1000 | 1000 | 1000 | 1000 | 1000 |
| Weight of Spool wire (kg) | — | — | 12.5 | — | — |

Gas Tungsten Arc Welding Rods and Wires for Stainless Steel

| Brand Name | Specif | ication | Dia. | Application and Characteristics |
|------------|-----------------|---------------|----------------------------|--|
| Brand Name | JIS | AWS | mm | Application and Characteristics |
| YT-308 | ☆Z 3321 YS308 | ☆A5.9 ER308 | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of SUS304 |
| YT-308UL | ☆Z 3321 YS308L | ☆A5.9 ER308L | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Ultra Low C type of YT-308L |
| YT-309 | ☆Z 3321 YS309 | ☆A5.9 ER309 | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of 22%Cr-12%Ni stainless steel
(SUS309S), clad side of 18%Cr-8%Ni
stainless clad steel and dissimilar joints of
stainless steel and mild steel. |
| YT-309Mo | ☆Z 3321 YS309Mo | ☆A5.9 ER309Mo | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of dissimilar metals such as
18%Cr·12%Ni·2%Mo stainless steel to mild
steel |
| YT-310 | ☆Z 3321 YS310S | ☆A5.9 ER310S | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of SUS310 |
| YT-316 | ☆Z 3321 YS316 | ☆A5.9 ER316 | 1.2
1.6
2.0
2.4 | Welding of SUS316 |
| YT-316UL | ☆Z 3321 YS316L | ☆A5.9 ER316L | 1.2
1.6
2.0
2.4 | Ultra Low C type of YT-316L |
| YT-317L | ☆Z 3321 YS317L | ☆A5.9 ER317L | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of SUS317L |
| YT-320 | _ | ☆A5.9 ER320LR | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of Alloy 20Cb3 |
| YT-347 | ☆Z 3321 YS347 | ☆A5.9 ER347 | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of SUS321 and SUS347 |
| YT-347AP | | | 1.2
1.6
2.0
2.4 | Welding of 347AP pipe |

| | Турі | cal chemica | l compositio | ons of weld | metal (%) | | Typical mech
erties of w | nanical proj
veld metal |
|-------|------|-------------|--------------|-------------|-----------|---------------------|-----------------------------|----------------------------|
| С | Si | Mn | Ni | Cr | Mo | Other | TS,
MPa | El,
% |
| 0.05 | 0.35 | 1.62 | 10.0 | 20.2 | _ | _ | 650 | 40 |
| 0.013 | 0.51 | 1.42 | 10.0 | 20.5 | _ | _ | 510 | 58 |
| 0.05 | 0.40 | 1.65 | 12.4 | 23.8 | _ | _ | 600 | 43 |
| 0.11 | 0.38 | 2.31 | 13.9 | 23.4 | 2.2 | _ | 680 | 33 |
| 0.04 | 0.35 | 1.56 | 21.5 | 26.9 | _ | _ | 600 | 43 |
| 0.04 | 0.35 | 1.52 | 12.2 | 19.0 | 2.5 | _ | 620 | 31 |
| 0.015 | 0.55 | 1.51 | 12.6 | 19.0 | 2.5 | _ | 530 | 49 |
| 0.01 | 0.41 | 1.77 | 14.1 | 18.7 | 3.5 | _ | 520 | 55 |
| 0.004 | 0.08 | 1.71 | 33.6 | 20.5 | 2.5 | Nb: 0.2
Cu: 3.5 | 520 | 55 |
| 0.02 | 0.43 | 1.79 | 9.7 | 19.4 | _ | Nb: 0.74 | 670 | 46 |
| 0.03 | 0.35 | 1.47 | 9.4 | 20.6 | _ | Nb: 0.44
N: 0.19 | 690 | 36 |

GTAW

g

GTAW

g

Gas Tungsten Arc Welding Rods and Wires for Stainless Steel

| D IN | Specifi | cation | Dia. | | |
|------------|----------------|--------------|---|--|--|
| Brand Name | JIS | AWS | mm | Application and Characteristics | |
| YT-DP8 | ☆Z 3321 YS2209 | ☆A5.9 ER2209 | $ \begin{array}{c} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $ | Welding of SUS329J3L and UNS S31803 | |
| YT-DP3 | _ | _ | $ \begin{array}{c} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $ | Welding of SUS329J4L | |
| YT-DP3W | _ | _ | $ \begin{array}{c} 1.0 \\ 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $ | Welding of Super Duplex Stainless Steel
(DP3W tube, NAR-DP3W) | |
| YT-410 | ☆Z 3321 YS410 | ☆A5.9 ER410 | $ \begin{array}{r} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $ | Welding of SUS410 | |
| YT-430 | ☆Z 3321 YS430 | ☆A5.9 ER430 | 1.2 | | |
| YT-430L | ☆Z 3321 YS430L | ☆A5.9 ER430 | 1.6
2.0
2.4 | Welding of SUS430 | |
| YT-190 | _ | _ | $ \begin{array}{c} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $ | Welding of NSSC™190 and YUS190
(190Cr-2Mo-Ti, Nb) | |
| YT-444 | _ | _ | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of SUS444 | |

| | Typical o | hemical co | Typical | | l properties of weld
etal | | | | |
|-------|-----------|------------|---------|------|------------------------------|----------------------------------|------------|----------|----------|
| С | Si | Mn | Ni | Cr | Mo | Other | TS,
MPa | El,
% | PWHT |
| 0.01 | 0.41 | 1.61 | 8.4 | 22.1 | 3.26 | N: 0.10 | 780 | 35 | _ |
| 0.01 | 0.37 | 0.78 | 9.3 | 25.3 | 3.03 | W: 0.27
Cu: 0.4
N: 0.17 | 830 | 29 | _ |
| 0.02 | 0.42 | 0.53 | 9.2 | 25.7 | 3.07 | W: 2.11
Cu: 0.5
N: 0.28 | 890 | 29 | _ |
| 0.06 | 0.38 | 0.30 | _ | 12.9 | _ | _ | 520 | 33 | 850°C×2h |
| 0.05 | 0.33 | 0.37 | - | 16.8 | _ | _ | 530 | 28 | |
| 0.01 | 0.39 | 0.49 | _ | 16.8 | _ | - | 520 | 30 | 750°C×2h |
| 0.008 | 0.09 | 0.16 | _ | 19.2 | 1.93 | Nb: 0.30
N: 0.011
Ti: 0.13 | 480 | 12 | _ |
| 0.004 | 0.02 | 0.06 | 0.5 | 19.0 | 2.14 | Nb: 0.29
N: 0.005
O: 0.002 | 500 | 28 | _ |

234

WELDREAM["]

GTAW

g

Memo

----------- - - -- - - -

Special Alloy

Covered Arc Welding Electrodes Submerged Arc Welding Materials Gas Tungsten Arc Welding Rods and Wires

YAWATA™ WELD B (*N*

JIS Z 3225 D9Ni-1 *AWS A5.11 ENiCrFe-4

For 9%Ni Steel

APPLICATIONS

Welding of 9%Ni steel for cryogenic storage tanks for LNG. Liquified nitrogen, etc.

CHARACTERISTICS

YAWATA WELD B(M) is an INCONEL[™] type electrode corresponding to INCO-WELD[™] B and is a modified version of YAWATA WELD B for higher strength. Weld metal shows excellent strength and toughness at extremely low temperatures and meets the specifications of API and NV for the welding of 9%Ni steel. With AC, it permits easy operation free from arc blow.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Arc length should be kept as short as possible.
- 3. Crater treatment or grinding off of crater is required.

WELDING POSITION

NITTETSU[™] WELD 196

JIS Z 3225 D9Ni-2 *AWS A5.11 ENiMo-9

For 9%Ni Steel

APPLICATIONS

Welding of 9%Ni steel for cryogenic storage tanks for LNG. Liquified nitrogen. etc.

CHARACTERISTICS

NITTETSU WELD 196 is a Hastellov type electrode. Weld metal shows excellent strength and toughness at extremely low temperatures and meets the specifications of API and NV for the welding of 9%Ni steel.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 300~350°C for 60 minutes before use.
- 2. Arc length should be kept as short as possible.
- 3. Crater treatment or grinding off of crater is required.

WELDING POSITION

Si

C

SMAW

10

Identification color: End-brown, secondary-white

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Р | S | Cu | Fe | Ni | Cr | Nb | Mo |
|------|------|------|-------|-------|------|------|------|------|------|------|
| 0.09 | 0.24 | 3.27 | 0.008 | 0.003 | 0.02 | 10.4 | 65.1 | 15.0 | 1.56 | 2.32 |

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at -196°C,
J |
|------------------------|--------------------------|------------------|------------------------------------|
| 420 | 700 | 40 | 76 |

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

| Diameter (| mm) | 3.2 | 5.0 | | | | |
|------------|----------|--------|---------|---------|--|--|--|
| Length (m | m) | 350 | 350 | 350 | | | |
| Current | F | 80~100 | 110~140 | 140~180 | | | |
| А | V-up, OH | 70~90 | 100~130 | — | | | |

Identification color: End-Purple, secondary-White

Р 0.002 0.04 0.350.30 0.003 2.6673.5

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

Mn

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at -196°C,
J |
|------------------------|--------------------------|------------------|------------------------------------|
| 440 | 720 | 51 | 98 |

S

Fe

Ni

Mo

19.2

W

2.78

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

| | | | 1 | |
|---------------|----------|--------|---------|---------|
| Diameter (mm) | | 3.2 | 3.2 4.0 | |
| Length (mi | m) | 300 | 350 | 350 |
| Current | F | 80~100 | 110~140 | 140~180 |
| А | V-up, OH | 70~90 | 100~130 | — |

238

For 9%Ni Steel

APPLICATIONS

Welding of 9%Ni steel for cryogenic storage tanks for LNG, Liquified nitrogen, etc.

CHARACTERISTICS

These are used for LNG Tanks, available in the all positions, have excellent welding efficiency in addition to high strength and toughness.

NI9 provides a smooth bead appearance, minimal spattering and slag is easily removable.

GUIDELINES FOR USAGE

- 1. Electrodes should be redried at 350°C for 60 minutes before use.
- 2. Arc length should be kept as short as possible during welding.
- 3. Crater treatment or grinding off of crater is required.
- 4. It should be mentioned that porosity may occur in overhead position welding.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Р | S | Cu | Fe | Ni | Cr | Nb | Mo |
|------|------|------|-------|-------|------|-----|------|------|------|------|
| 0.07 | 0.32 | 3.06 | 0.003 | 0.008 | 0.04 | 6.9 | 65.4 | 14.2 | 1.65 | 6.26 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at -196°C,
J |
|------------------------|--------------------------|------------------|------------------------------------|
| 450 | 720 | 51 | 84 |

■ SIZES & RECOMMENDED CURRENT RANGE<AC or DC(+)>

| Diameter (| mm) | 2.6 | 3.2 | 4.0 | 5.0 |
|------------|----------|--------|----------------|----------------|---------|
| Length (m | m) | 350 | 350 | 350 | 350 |
| Current | F | 70~130 | $120 \sim 160$ | $140 \sim 180$ | 190~230 |
| А | V-up, OH | 70~110 | 110~130 | 110~140 | — |

Identification color: End-white, secondary-green

|
 | |
|------|--|
|
 | |

Covered Arc Welding Electrodes for Nickel and Nickel Alloy

| Brand Name | Specif | ication | Dia. | |
|-------------------------|--------------------|----------------------------------|--------------------------|---|
| Brand Name | JIS | AWS | mm | Application and Characteristics |
| YAWATA
WELD B | Z 3224
ENi6133 | ☆A5.11
ENiCrFe•2 | 2.6
3.2
4.0
5.0 | YAWATA WELD B is an INCONEL [™] type electrode
which is a modified version of INCO-WELD [™] A, by
The International Nickel Company, Inc., for AC use.
Weld metal shows excellent resistance to heat, corro-
sion and oxidization as well as remarkable toughness
at extremely low temperatures. In the welding of dis-
similar metals, carbon migration and embrittlement
are lower than stainless steel electrodes and coefficient
of heat expansion is between those of carbon steel and
austenitic stainless steel. |
| | Welding | Welding Position | | ASME F/1G HF/2F H/2G OH/4G VU/3G |
| YAWATA
WELD 182 AC | ☆Z 3224
ENi6182 | ☆A5.11
ENiCrFe ⁻ 3 | 2.6
3.2
4.0
5.0 | YAWATA WELD 182 AC is an INCONEL type electrode
of which weld metal has the same properties as that
of INCONEL Welding Electrode 182. It is suitable
for welding and surfacing extremely thick plates for
nuclear reactor vessels since a slightly high titanium
content in weld metal checks the occurrence of blow-
holes. For the weldment to be used at high tempera-
tures more than 1,000°F(538°C), YAWATA WELD B is
recommended because it assures higher strength at
high temperatures than YAWATA WELD 182 AC. |
| | Welding | Position | AWS/ | ASME F/1G HF/2F H/2G OH/4G VU/3G |
| NITTETSU
WELD 112 AC | Z 3224
ENi6625 | ☆A5.11
ENiCrMo-3 | 2.6
3.2
4.0
5.0 | High strength INCONEL type electrode for AC welding
of high Ni alloys such as INCONEL 625 and dissimi-
lar metals of various alloys. Weld metal shows high
resistance to heat, oxidation and corrosion as well as
remarkably high strength. |
| | Welding | Position | AWS/ | ASME F/1G HF/2F H/2G OH/4G VU/3G |
| | Noto ' Figuro of i | Illustration relation | ng to th | a symbol of welding position in the table mentioned above |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

YAWATA is a registered trademark or trademark of NIPPON STEEL CORPORATION, and our company is licensed. NITTETSU is a registered trademark or trademark of NIPPON STEEL CORPORATION, and our company is licensed.

| | Тур | pical Che | emical C | omposit | ions of V | Veld Met | al (%) | | Typica | | nical Pro
I Metal | perties of |
|------|------|-----------|----------|---------|-----------|----------|--------|----------------------------------|------------|------------|----------------------|---------------------|
| С | Si | Mn | Fe | Ni | Cr | Nb | Mo | Other | YS,
MPa | TS,
MPa | El,
% | Charpy 2V-noto
J |
| 0.06 | 0.30 | 2.91 | 10.1 | 68.5 | 16.65 | 1.69 | 0.76 | Cu: 0.06 | 380 | 650 | 40 | -196°C
93 |
| 0.08 | 0.52 | 6.85 | 7.30 | 68.4 | 14.2 | 1.66 | | Cu: 0.14
Ti: 0.53
Co: 0.03 | 440 | 660 | 44 | 0°C
130 |
| 0.06 | 0.38 | 0.46 | 4.95 | 59.2 | 21.8 | 3.40 | 8.90 | _ | 490 | 790 | 43 | _ |

10

243

SMAW

NITTETSU[™] FLUX 10H × NITTETSU[™] FILLER 196

*JIS Z 3333 FS9Ni-H YS9Ni *AWS A5.14 ERNiMo-9

For 9%Ni Steel

APPLICATIONS

Horizontal butt welding of 9%Ni steel for cryogenic storage tanks for LNG. liquefied nitrogen, etc.

CHARACTERISTICS

Hastelloy type weld metal shows high strength and excellent toughness at extremely low temperatures, and meets the requirements of API and NV for 9%Ni steel. Crack resistance is better than INCONEL[™] type wires. Slag is easy to remove, bead appearance and X-ray properties are excellent.

GUIDELINES FOR USAGE

1. Flux should be redried at 300~350°C for 120 minutes before use. 2. DC (+) should be used.

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Р | s | Fe | Ni | Mo | W | Al | Base
Metal | Plate Thick
ness
mm | Welding
Method |
|------|------|------|-------|-------|------|------|------|------|------|---------------|---------------------------|-------------------|
| 0.04 | 0.45 | 0.62 | 0.002 | 0.001 | 2.03 | 73.8 | 19.8 | 2.58 | 0.27 | 9%Ni steel | 19 | Flat, Padding |

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield
Strength,
MPa | Tensile
Strength,
MPa | Elonga-
tion,
% | Charpy 2 V-notch
at -196°C,
J | Base
Metal | Plate
Thickness
mm | Welding
Method |
|---------------------------|-----------------------------|-----------------------|-------------------------------------|---------------|--------------------------|-------------------|
| 410 | 710 | 50 | 110 | 9%Ni steel | 19 | Flat |

TYPICAL WELD JOINT TEST

| Tensile Te | est of Weld N | Aetal | Joint Ten | | (1 o.1 i.) | | Plate | |
|---------------------------|-----------------------------|-----------------------|-----------------------------|-------------------------------|-----------------|---------------|-------|--------------------|
| Yield
Strength,
MPa | Tensile
Strength,
MPa | Elong-
ation,
% | Tensile
Strength,
MPa | Location
of
Fracture | at -196°C,
J | | | Welding
Method |
| 420 | 690 | 43 | 740 | Weld metal
+
Base metal | 130 | 9%Ni
steel | 30 | Horizontal
Butt |

■ TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

| Welding Method | Wire Dia.
mm | Current,
A | Voltage,
V | Speed,
cm/min | Wire Extension |
|-----------------|-----------------|---------------|---------------|------------------|----------------|
| Horizontal Butt | 1.6 | 200~280 | 27±2 | 20~60 | 25 ± 5 |
| Horizontal Butt | 2.4 | 300~380 | 26±2 | 30~70 | 25 ± 5 |
| | 2.1 | 000 000 | 10-10 | 00 10 | 1010 |

BF-276×Y-276

*AWS A5.14 ERNiCrMo-4

For 9%Ni Steel

APPLICATIONS

Welding of 9%Ni steel for cryogenic storage tanks for LNG. Liquified nitrogen. etc.

CHARACTERISTICS

Hastelloy type weld metal shows high strength and excellent toughness at extremely low temperatures. Welding materials equivalent to the alloy C276 series are used in 9% Ni tanks as the world's mainstream. Slag is easy to remove. bead appearance and X-ray properties are excellent.

GUIDELINES FOR USAGE

- 1. Flux should be redried at 300~ 350°C for 120 minutes before use.
- 2. DC(+) should be used.

WELDING POSITION

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| С | Si | Mn | Р | s | Cu | Fe | Ni | Cr | Mo | W | Co | Plate Thickness
mm | Welding method |
|------|------|------|-------|-------|------|-----|-------|------|-------|------|------|-----------------------|----------------|
| 0.01 | 0.10 | 0.75 | 0.001 | 0.002 | 0.01 | 6.0 | 56.80 | 16.4 | 16.25 | 3.37 | 0.01 | 20 | Flat |

TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation,
% | Charpy 2V-notch
at -196°C,
J | Plate Thickness
mm | Welding
method |
|------------------------|--------------------------|------------------|------------------------------------|-----------------------|-------------------|
| 470 | 715 | 46 | 103 | 20 | Flat |

TYPICAL WELD JOINT TEST

| Joint Ter | nsile Test | Charpy 2V-notch | Base Metal Plate Thickness mm | | 117.1.1. |
|--------------------------|--------------------------|-----------------|-------------------------------|----|-------------------|
| Tensile Strength,
Mpa | Location of
Fracture | at –196°C,
J | Base Metal | | Welding
method |
| 730 | Weld metal
Base metal | 88 | 9%Ni steel | 25 | Flat |

TYPICAL GROOVE GEOMETRY AND WELDING CONDITIONS

| Welding
Method | Wire Dia.
mm | Current,
A | Voltage,
V | Speed,
cm/min | Wire
Extension |
|-------------------|-----------------|---------------|---------------|------------------|-------------------|
| Flat | 2.4 | 300~400 | 30±2 | $30 \sim 50$ | 25±5 |
| Horizontal | 2.4 | 300~380 | 26±2 | 30~70 | 25±5 |

10

SAW

Gas Tungsten Arc Welding Rods and Wires for Nickel and Nickel Alloy

| | Specifi | ication | D | | | | |
|------------------------|--|-----------------------|---|---|--|--|--|
| Brand Name | JIS | AWS | Dia.
mm | Application and Characteristics | | | |
| YT-NIC | ☆Z 3334 SNi2061 | ☆A5.14 ERNi-1 | $ \begin{array}{c} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $ | Welding for pure Nickel and dissimilar joint | | | |
| YAWATA
FILLER 82 | ☆Z 3334 SNi6082 | ☆A5.14
ERNiCr·3 | 1.2
1.6
2.0
2.4 | Welding of INCONEL [™] 600 and INCOLOY [™]
800 requiring resistance to heat, oxidation and
corrosion, and various combinations of dis-
similar metals such as carbon steel, stainless
steel and Ni alloys. Weld metal shows proper-
ties similar to INCONEL Filler Metal 82. In
the welding of dissimilar metals, crack resis-
tance is excellent since the coefficient of heat
expansion is between those of carbon steel and
austenitic stainless steel. | | | |
| NITTETSU
FILLER 196 | ☆Z3332
YGT9Ni-2 | | | Welding of 9%Ni steel to be used at ex-
tremely low temperatures for storage tanks
for LNG and liquefied nitrogen gas and
LNG tankers.
Weld metal shows high strength and excel-
lent toughness at extremely low tempera-
tures, and meets the requirements of API
and NV. Crack resistance is also excellent. | | | |
| YT-NC718 | C718 ☆Z 3334 SNi7718 ☆A5.14
ERNiFeCr-2 | | $ \begin{array}{c} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $ | Welding of INCONEL718 | | | |
| NITTETSU
FILLER 625 | | | 1.2
1.6
2.0
2.4 | Welding of INCONEL625, 601 and
INCOLOY825 requiring resistance to heat,
oxidation and corrosion, and INCOLOY825
to various kinds of dissimilar metals.
It is also used for surfacing of carbon
steel. Weld metal has properties similar
to INCONEL Filler Metal 625 and shows
excellent resistance to heat, oxidation and
corrosion as well as high fatigue strength. | | | |
| YT-HSTC2 | ☆A5.14
☆Z 3334 SNi6276 ☆A5.14
ERNiCrMo-4 | | $ \begin{array}{c} 1.2 \\ 1.6 \\ 2.0 \\ 2.4 \end{array} $ | Welding of Hastelloy C276 | | | |
| YT-NC622 | ☆Z 3334 SNi6022 | ☆A5.14
ERNiCrMo-10 | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of Hastelloy C22 | | | |
| YT-NC617 | PNC617 ☆Z 3334 SNi6617 ☆A5.14
ERNiCrCoMo·1 | | $1.2 \\ 1.6 \\ 2.0 \\ 2.4$ | Welding of INCONEL617 | | | |

YAWATA is a registered trademark or trademark of NIPPON STEEL CORPORATION, and our company is licensed. NITTETSU is a registered trademark or trademark of NIPPON STEEL CORPORATION, and our company is licensed.

| | Typic | al Chem | ical Cor | position | s of Wel | d Metal (| (%) | Typical | | al Propei
Ietal | ties of Weld |
|-------|-------|---------|----------|----------|----------|-----------|---|------------|------------|--------------------|----------------------------------|
| С | Si | Mn | Ni | Cr | Mo | Fe | Other | YS,
MPa | TS,
MPa | El,
% | Charpy 2V-
notch at 0°C,
J |
| 0.001 | 0.35 | 0.33 | 96.0 | _ | _ | 0.05 | Ti: 2.51
Al: 0.15 | 230 | 460 | 41 | _ |
| 0.03 | 0.11 | 3.05 | 72.7 | 19.7 | | 1.50 | Co: 0.01
Ti: 0.35
Nb: 2.68 | 410 | 680 | 47 | 150 |
| 0.02 | 0.01 | 0.03 | 74.7 | _ | 20.2 | 1.04 | Cu: 0.75
W: 2.96 | 420 | 720 | 46 | -196°C
160 |
| 0.028 | 0.08 | 0.08 | 53.8 | 18.0 | 3.1 | _ | Nb: 5.2
Cu: 0.10
Al: 0.45
B: 0.001 | 520 | 850 | 28 | _ |
| 0.02 | 0.20 | 0.08 | 61.6 | 21.8 | 8.96 | 2.84 | Nb: 3.55
Ti: 0.27
Al: 0.18 | 600 | 790 | 46 | _ |
| 0.017 | 0.01 | 0.52 | 55.4 | 14.8 | 15.2 | 5.5 | Co: 1.9
Cu: 0.05
W: 3.8
V: 0.2 | 550 | 770 | 40 | _ |
| 0.009 | 0.05 | 0.22 | 57.5 | 20.6 | 14.0 | 2.3 | Co: 0.09
W: 3.3
V: 0.01 | 550 | 790 | 40 | _ |
| 0.08 | 0.11 | 0.13 | 52.8 | 21.3 | 9.4 | 0.5 | Ti: 0.3 | 520 | 840 | 28 | _ |

10

WELDREAM

GTAW

Memo

-----_____ - - - - - - -- - - -

Surfacing Cast Iron

Covered Arc Welding Electrodes

Covered Arc Welding Electrodes for Surfacing

| Brand | | ication
lor | Specifica-
tion | Dia. | Application and Characteristics |
|--------|----------------|----------------|---------------------------|--------------------------|---|
| Name | End | Secon-
dary | JIS | mm | Application and Unaracteristics |
| H-250B | Light
blue | Red | ☆Z 3251
DF2A-
250-R | 4.0
5.0
6.0 | It is a high titanium oxide type electrode being
used widely for surfacingof shafts, gears and
crane wheels. Weldability is excellent and bead
apearance is beautiful. Weld metal has the hard-
ness of about 250 Vickers and is easily machined. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F H/2G VU/3G |
| H-250C | Light
blue | black | ☆Z 3251
DF2A-
250-B | 3.2
4.0
5.0
6.0 | Surfacing of shafts, rollers, couplings and crane
wheels.
H-250C is a low hydrogen type electrode with
excellent weldability. It is suitable for surfacing
worn machine parts since weld metal has the
hardness of about 250 Vickers as welded and is
easily machined. It also is suitable for deposit-
ing buffer layer in multi-layer welding due to its
high crack resistance. |
| | Welding Positi | | AWS/ASME | F/1G | HF/2F H/2G VU/3G |
| H-300C | Light
blue | Orange | ☆Z 3251
DF2A-
300-B | 4.0
5.0
6.0 | Surfacing of shafts, rollers, spindles, gears and
crane wheels
H-300C is a low hydrogen type electrode for
surfacing machine parts, and carbon steel and
cast steel of poor weldability. Weld metal has the
hardness of about 300 Vickers as welded and is
easily machined. Weldability is excellent. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F H/2G VU/3G |
| H-350C | Light
blue | White | ☆Z 3251
DF2A-
350-B | 4.0
5.0
6.0
7.0 | Surfacing of shafts, rollers, and bulldozer idlers
and sprockets.
H-350C is a low hydrogen type electrode for
surfacing worn machine parts subjected to high
stress abrasion by metal to metal sliding or roll-
ing. Weld metal of about 350 Vickers hardness as
welded provides reasonable abrasion resistance
and is machinable in general. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F H/2G VU/3G |
| H-500 | Reddish Blue | | ☆Z 3251
DF2B-
500-B | 3.2
4.0
5.0
6.0 | Surfacing of track links, bulldozer idlers and
bucket lips.
H·500 is a low hydrogen type electrode for surfac-
ing machine parts which are subjected to metal
to metal abrasion or earth and sand abrasion and
are used without machining. Weld metal of about
500 Vickers hardness and martensitic structure |
| | | | | | provides reasonable toughness and stress resis-
tance to some extent. |

| | | Typical C | hemical C | ompositio | n of Weld | Metal (%) | | Typical Hardness of Weld Metal (HV) | | |
|---|------|-----------|-----------|-----------|-----------|-----------|--------|-------------------------------------|------------------------|--------------|
| _ | С | Si | Mn | Cr | Mo | v | Others | As Welded | After
work-hardened | PWHT |
| | 0.12 | 0.43 | 0.52 | 0.81 | _ | _ | _ | 240 | _ | _ |
| | 0.13 | 0.27 | 0.94 | 0.65 | _ | _ | _ | 250 | _ | 500°C
230 |
| - | 0.18 | 0.83 | 1.55 | 0.60 | _ | _ | _ | 310 | _ | 500°C
285 |
| - | 0.16 | 0.43 | 1.32 | 1.55 | _ | _ | _ | 355 | _ | 500°C
335 |
| - | 0.34 | 0.76 | 1.13 | 3.06 | 0.44 | _ | | 535 | _ | 500°C
495 |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

SMAW

11

SMAW

Covered Arc Welding Electrodes for Surfacing

| H-600 Reddish
brown Pink $\stackrel{\times}{\Sigma}Z 3251$
DF2B-
600·B hammers and bucket lips.
H-600 is a low hydrogen type electrode for sur
tion and mining machinery to be used withou
machining. Weld metal of about 600 Vickers
hardness and martensitic structure provides high
toghness in spite of high hardness and excellen
abrassion resistance to midium impact. H-700 Black $\stackrel{\times}{\Sigma}Z 3251$
DF2B-
700·B 4.0 Surfacing of mixers, screw conveyers and casings
H-700 is a low hydrogen type electrode for surfacing
ing machine parts which are subjected to heavy
ing machine parts
which are not subjected to heavy ingact. Well
metal of about 750 Vickers hardness
and martensitic structure provides stably high hardness
and abrasion resistance. Weldability is excellent
which are not subjected to heavy ingact. Well
metal of about 750 Vickers hardness and mart
ensite structure provides stably high hardness
and abrasion resistance. Weldability is excellent. H-800 Reddish
brown Purple $\stackrel{\times}{\Sigma}Z 3251DF3C-700·B 4.05.06.0 If H/2F VU/3G H-800 Reddishbrown Purple \stackrel{\times}{\Sigma}Z 3251DF3C-700·B 4.05.0 Surfacing of dredger punp mouths, impellersliners and cutter knives. H-800 Reddishbrown Purple \stackrel{\times}{\Sigma}Z 3$ | | 9 | | | | |
|---|--------|---------|----------|----------|------------|--|
| Name End Secon-
dary JIS mm mm H-600 Reddish
brown Pink $\frac{1}{\sqrt{2}}$ Z 3251 Surfacing of track rollers, crusher teeth, mil
hammers and bucket lips.
H-600 is a low hydrogen type electrode for surfacing
facing worn parts of civil engineering, construct
tion and mining machinery to be used withou
machining. Weld metal of about 700 vickers hardness
and martensitic structure provides high
toughness in spite of high hardness and excellen
abrasion resistance to midium impact. H-700 Black - $\frac{1}{\sqrt{2}}$ Z 3251
DF2B-
700-B Surfacing of mixers, screw conveyers and casings
ing machine parts which are subjected to heav
impact. Weld metal of about 700 vickers hardness
and martensitic structure provides extremely
high abrasion resistance. H-700 Black - $\frac{1}{\sqrt{2}}$ Z 3251
DF2B-
700-B It is a low hydrogen type electrode for surfacin
civil engineering and construction machine part
which are not subjected to heavy impact. Well
metal of about 700 vickers hardness
and abrasion resistance. H-750 Reddish
brown Yellow $\frac{1}{\sqrt{2}}$ Z 3251
DF3C-
700-B L H-76 $\frac{1}{\sqrt{2}}$ Surfacing of dredger pump mouths, impellers
liners and cutter knives. H-800 Reddish
brown Purple $\frac{1}{\sqrt{2}}$ Z 3251
DF3C-
700-B Surfacing of dredger pump mouths, impellers
liners and cutter knives. H-800 Reddish
brown Black $\frac{1}{\sqrt{2}}$ Z | Brand | | | - | Dia. | Application and Characteristics |
| $ H-600 \begin{tabular}{ c c c c c c c } H-600 & Reddish brown \end{tabular} Pink \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | Name | End | | JIS | mm | Application and characteristics |
| $H-700$ $H-700$ $H-700$ $H-700$ $H-700 is a low hydrogen type electrode for surfacing machine parts which are subjected to heavy impact. Weld metal of about 700 Vickers hardness and mar tensitic structure provides extremely high hardness and abrasion resistance. Weldability is excellent. Welding Position IAWS/ASME F/1G HF/2F VU/3G H-800 H-800 Reddish brown Purple \frac{r_{2}Z 3251}{700 - B} f-1G HF/2F VU/3G H-800 is a low hydrogen type electrode to giv extremely hard weld metal due to dispersedly precipitated borides and carbides. Although it in to suitable for impact abrasion since weld metal tends to crack, it shows excellent resistance tearth and sand abrasion. H-13Cr Reddish brown Black \frac{r_{2}Z 3251}{10 F_{3}G} \frac{r_{1}Z 3251}{10 F_{3}G} \frac{r_{1}Z 3251}{10 F_{3}G} \frac{r_{2}Z 3251}{10 F_{3}G} \frac{r_{2}Z 3251}{10 F_{3}G} \frac{r_{1}Z 3251}{10 F_{3}G} \frac{r_{2}Z 3251}{10 F_{3}G} \frac{r_{1}Z 4}{10 F_{3}G} \frac{r_{1}Z 4}{10 F_{3}G} \frac{r_{1}Z 4}{10 F_{3}G} \frac{r_{1}Z 4}$ | H-600 | | Pink | DF2B- | 5.0 | H 600 is a low hydrogen type electrode for sur-
facing worn parts of civil engineering, construc-
tion and mining machinery to be used without
machining. Weld metal of about 600 Vickers
hardness and martensitic structure provides high
toughness in spite of high hardness and excellent |
| H-700 Black ☆Z 3251
DF2B-
700·B 4.0
5.0
5.0
7.0 H-700 is a low hydrogen type electrode for surfact
ing machine parts which are subjected to heavy
impact. Weld metal of about 700 Vickers hardness
and martensitic structure provides extremely
high abrasion resistance. H-750 Welding Position ZW5/ASME F/1G HF/2F VU/3G H-750 Reddish
brown Yellow ☆Z 3251
DF3C-
700·B 4.0
6.0 It is a low hydrogen type electrode for surfacing
civil engineering and construction machine parts
which are not subjected to heavy impact. Weld
metal of about 750 Vickers hardness and mar
tensitic structure provides stably high hardness
and abrasion resistance. H-750 Welding Position ZW5/ASME F/1G HF/2F VU/3G H-800 Reddish
brown Purple ☆Z 3251
DF3C-
700·B 5.0
6.0 Surfacing of dredger pump mouths, impellers
liners and cutter knives. H-800 Reddish
brown Purple ☆Z 3251
DF3C-
700·B 5.0
6.0 Surfacing of dredger pump mouths, impellers
liners and cutter knives. H-13Cr Reddish
brown Purple ☆Z 3251
DF4B-
350·B F/1G HF/2F H-13Cr Reddish
brown Black ☆Z 3251
DF4B-
350·B 4.0
5.0 Surfacing of hammer mills, roll crushers, ho
trimming dies, roll dies and carbides Although it in
out suitable for parts subjected to medium tab
a schmeical composition similar to tool stee
SKD11 and the hardness of about 350 Vickers a
welded and 500·600 Vickers | | Welding | Position | AWS/ASME | F/1G | HF/2F VU/3G |
| H-750 Reddish brown Yellow ☆Z 3251 DF3C- 700-B 4.0 0.00 for 0.00 | H-700 | Black — | | DF2B- | 5.0
6.0 | Surfacing of mixers, screw conveyers and casings.
H-700 is a low hydrogen type electrode for surfac-
ing machine parts which are subjected to heavy
impact. Weld metal of about 700 Vickers hardness
and martensitic structure provides extremely
high abrasion resistance. |
| H-750 Reddish
brown Yellow ☆Z 3251
DF3C·
700-B 4.0
5.0
6.0 civil engineering and construction machine part
which are not subjected to heavy impact. Weld
metal of about 750 Vickers hardness and mar
tensitic structure provides stably high hardness
and abrasion resistance. Weldability is excellent. Welding Position [AWS/ASME] F/1G HF/2F VU/3G H-800 Reddish
brown Purple ☆Z 3251
DF3C·
700-B 4.0
6.0 Surfacing of dredger pump mouths, impellers
liners and cutter knives. H-800 Welding Position [AWS/ASME] F/1G HF/2F VU/3G Welding Position [AWS/ASME] F/1G HF/2F Surfacing of dredger pump mouths, impellers
liners and cutter knives. H-13Cr Reddish
brown Purple ☆Z 3251
DF3C·
700-B 4.0
5.0 Surfacing of hammer mills. roll crushers. ho
trimming dies, roll dies and forging benches sub
jected to high temperature abrasion. Weld metat
has chmeical composition similar to tool stee
SKD11 and the hardness of about 350 Vickers a
welded and 500-600 Vickers after work hardened
it also is suitable for parts subjected to mediun
impact abrasion at high temperatures since weld
metal is resistant to comparatively high heat. | | Welding | Position | AWS/ASME | F/1G | HF/2F VU/3G |
| H-800 Reddish
brown Purple ☆Z 3251
DF3C-
700-B 4.0
5.0
6.0 Surfacing of dredger pump mouths, impellers
liners and cutter knives.
H-800 is a low hydrogen type electrode to give
extremely hard weld metal due to dispersedly
precipitated borides and carbides. Although it in
not suitable for impact abrasion since weld metal
tends to crack, it shows excellent resistance to
earth and sand abrasion. H-13Cr Reddish
brown Black ☆Z 3251
DF4B-
350-B 4.0
5.0 H-13Cr Reddish
brown Black ☆Z 3251
DF4B-
350-B 4.0
5.0 | H-750 | | Yellow | DF3C- | 5.0 | It is a low hydrogen type electrode for surfacing
civil engineering and construction machine parts
which are not subjected to heavy impact. Weld
metal of about 750 Vickers hardness and mar-
tensitic structure provides stably high hardness
and abrasion resistance. Weldability is excellent. |
| H-800 Reddish
brown Purple ☆Z 3251
DF3C-
700-B 4.0
5.0
6.0 liners and cutter knives.
H-800 is a low hydrogen type electrode to give
extremely hard weld metal due to dispersedly
precipitated borides and carbides. Although it in
not suitable for impact abrasion since weld metal
tends to crack, it shows excellent resistance to
earth and sand abrasion. Welding Position AWS/ASME F/1G HF/2F Reddish
brown Black ☆Z 3251
DF4B-
350-B 4.0
5.0 Surfacing of hammer mills. roll crushers. ho
trimming dies, roll dies and forging benches sub
jected to high temperature abrasion. Weld metad
has chmeical composition similar to tool stee
SKD11 and the hardness of about 350 Vickers a
welded and 500 600 Vickers after work hardened
it also is suitable for parts subjected to mediu
impact abrasion at high temperatures since weld
metal is resistant to comparatively high heat. | | Welding | Position | AWS/ASME | F/1G | HF/2F VU/3G |
| H-13Cr Reddish
brown Black ☆Z 3251
DF4B-
350-B 4.0
5.0 Surfacing of hammer mills. roll crushers. ho
trimming dies, roll dies and forging benches sub
jected to high temperature abrasion. Weld meta
has chmeical composition similar to tool stee
SKD11 and the hardness of about 350 Vickers after work hardened
It also is suitable for parts subjected to mediun
impact abrasion at high temperatures since weld
metal is resistant to comparatively high heat. | H-800 | Purnle | | DF3C- | 5.0 | H-800 is a low hydrogen type electrode to give
extremely hard weld metal due to dispersedly
precipitated borides and carbides. Although it is
not suitable for impact abrasion since weld metal
tends to crack, it shows excellent resistance to |
| H-13Cr Reddish brown Black Black brown Black brown br | | Welding | Position | AWS/ASME | F/1G | HF/2F |
| Welding Position AWS/ASME F/1G HF/2F | H-13Cr | | | | | Surfacing of hammer mills. roll crushers. hot
trimming dies, roll dies and forging benches sub-
jected to high temperature abrasion. Weld metal
has chmeical composition similar to tool steel
SKD11 and the hardness of about 350 Vickers as
welded and 500-600 Vickers after work hardened.
It also is suitable for parts subjected to medium
impact abrasion at high temperatures since weld
metal is resistant to comparatively high heat. |
| | | Welding | Position | AWS/ASME | F/1G | HF/2F |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | , | Typical Cl | hemical C | ompositio | n of Weld | Metal (%) | | Typical Hardness of Weld Metal (HV) | | | |
|---|------|------------|-----------|-----------|-----------|-----------|---------|-------------------------------------|------------------------|--------------|--|
| | С | Si | Mn | Cr | Mo | V | Others | As Welded | After
work-hardened | PWHT | |
| | 0.45 | 0.50 | 1.15 | 3.95 | 0.60 | _ | _ | 625 | _ | 500°C
605 | |
| | 0.64 | 0.90 | 1.23 | 2.58 | _ | 0.72 | _ | 710 | _ | _ | |
| | 0.69 | 0.99 | 0.35 | 5.83 | _ | 1.71 | _ | 765 | _ | _ | |
| _ | 0.82 | 1.28 | 1.10 | 8.26 | 0.52 | _ | B: 0.45 | 815 | _ | _ | |
| _ | 1.21 | 0.34 | 0.30 | 13.3 | 0.50 | _ | _ | 360 | 520 | _ | |

11

SMAW

Covered Arc Welding Electrodes for Surfacing

| | 5 | | | | |
|---------|------------------|----------------|---------------------------|-------------------|---|
| Brand | | ication
lor | Specifica-
tion | Dia. | Application and Characteristics |
| Name | End | Secon-
dary | JIS | mm | Application and onla accentices |
| H-13M | Reddish
brown | Brown | ☆Z 3251
DFMA-
250-B | 4.0
5.0
6.0 | Filling up cavities of high manganese cast steel
and surfacing of parts subjected to impact abra-
sion such as boring mills. Weld metal of austern-
itic structure has chemical composition similar
to high manganese cast steel SCMnH2 and the
hardness of about 250-300 Vickers as welded.
Hardness goes up to 450-550 Vickers after work
hardened and improves abrasion resistance re-
markably. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F |
| H-13MN | Reddish
brown | White | ☆Z 3251
DFMB-
250-B | 4.0
5.0 | Filling up cavities of high manganese cast steel
and surfacing of parts subjected to impact abra-
sion such as boring mills. Weld metal has the
hardness of about 200-250 Vickers as welded
and is work hardened to 450~550 Vickers, like H-
13CrM, but toughness and crack resistance are
better since it contains Ni. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F |
| H-13CrM | Reddish
brown | Brown | _ | 4.0
5.0 | Surfacing of hot roll dies, tongue punches and
hot shears subjected to impact abrasion at high
temperataures. Weld metal of austenitic struc-
ture with finely precipitated carbide has high
hardness at temperatures of more than 600°C
showing high resistance to abrasion under high
temperatures. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F VU/3G |
| H-MCr | Light — | | ☆Z 3251
DFME-
250-B | 4.0
5.0
6.0 | Joining of high manganese steel and carbon steel
and surfacing of hot shears, forging molds, hot
rolls and dies subjected to impact abrasion at
high temperatures. Weld metal of Mn-Cr type
austenitic structure is hardened by impact and
shows excellent toughness and resistance to abra-
sion under high temperatures and impact. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F |
| | | | ☆Z 3251 | 3.2 | Surfacing of hot shears, press dies, tongue punch-
es, hydraulic turbine liners, and dredger pump
casings and liners subjected to abrasion under |
| H-11Cr | Blue | _ | DF4A-
500-B | 4.0
5.0 | high temperatures. Weld metal of austenitic
structure a welded shows resistance to abrasion
under comparatively high temperatures. |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typical C | hemical C | ompositio | n of Weld | Metal (%) | | Typical Ha | rdness of Weld | Metal (HV) |
|------|-----------|-----------|-----------|-----------|-----------|---------------------|------------|------------------------|--------------|
| С | Si | Mn | Cr | Mo | v | Others | As Welded | After
work-hardened | PWHT |
| 0.49 | 0.16 | 13.9 | _ | _ | _ | _ | 280 | 540 | _ |
| 0.90 | 0.26 | 12.61 | _ | _ | _ | Ni: 5.60 | 235 | 510 | _ |
| 0.19 | 0.51 | 12.16 | 13.71 | 1.56 | 1.13 | Ni: 2.45
W: 3.45 | 295 | _ | 700°C
160 |
| 0.11 | 0.58 | 15.55 | 15.11 | _ | _ | Ni: 2.45 | 215 | 490 | _ |
| 0.21 | 0.40 | 1.26 | 11.85 | _ | _ | _ | 540 | _ | _ |

254

SMAW

11

Covered Arc Welding Electrodes for Surfacing

| Brand | | ication
lor | Specifica-
tion | Dia. | | | |
|---------|------------------|----------------|-----------------------------|------------|---|--|--|
| Name | End | Secon-
dary | JIS | mm | Application and Characteristics | | |
| H-30Cr | Reddish
brown | Gray | ☆Z 3251
DFCrA
-700-BR | 4.0
5.0 | Surfacing of coal crushers, mixer blades, mixer
arms, sand pump casings, impellers and boring
tools subjected to heavy earth and sand abrasion
Weld metal of martensitic type high chromium
iron is very hard due to the precipitation o
chrome carbide, and shows extremely high resis
tance, although cracks occur, to low stress abra
sion of earth and sand. | | |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | | |
| H-30CrM | Reddish
brown | | ☆Z 3251
DFCrA
-700-BR | 4.0
5.0 | Surfacing of mixer blades, sand blast blades, bell
hoppers, impeller breakers, pump casings, impel-
lers and sintered ore chuting boards subject to
heavy earth and sand abrasion and ore abrasion
under high temperatures. Weld metal of aus-
tenitic type high chromium iron containing 5%
manganese in addition to chrome carbide shows
excellent resistance to abrasion under high tem-
peratures because thermal change of hardness is
smaller than taht of H-30Cr. | | |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typical C | hemical C | ompositio | 1 | Typical Hardness of Weld Metal (HV) | | | | |
|------|-----------|-----------|-----------|----|-------------------------------------|--------|-----------|------------------------|------|
| С | Si | Mn | Cr | Mo | v | Others | As Welded | After
work-hardened | PWHT |
| 3.55 | 0.96 | 110 | 31.90 | _ | _ | _ | 705 | _ | _ |
| 3.62 | 0.48 | 5.91 | 31.80 | _ | | | 620 | _ | _ |

SMAW

Covered Arc Welding Electrodes for Cast Iron

| Brand | ldentification
Color | | Specification | | Dia | |
|-------|-------------------------|-----------------|---------------------|--------------------|-------------------|---|
| Name | End | Secon-
dary | JIS AWS | | mm | Application and Characteristics |
| C-1N | Gold | Red | ☆Z3252
ECNi-CI | ★A5.15
ENi-CI | 3.2
4.0
5.0 | Welding and filling up of cavities of cast iron
products.
C-1N is a graphite type electrode with a pure
nickel core wire. Weld metal is not so hard and
is easily machined. Arc is stable and slag is
easy to remove. No preheating is required in
general. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | |
| C-5N | Gold | Light
purple | ☆Z3252
ECNiFe-CI | ☆A5.15
ENiFe-CI | 3.2
4.0
5.0 | Welding of normal cast irons and ductile cast
irons.
C·5N is a graphite type electrode. With Fe·Ni
wire. Weld metal shows excellent mechanical
properties and crack resistance. |
| | Welding | Position | AWS/ASME | F/1G | HF/2F | · |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| С | Si | Mn | Р | S | Ni |
|------|------|------|-------|-------|------|
| 1.00 | 0.71 | 1.14 | 0.002 | 0.001 | 95.8 |
| 0.90 | 0.35 | 0.56 | 0.005 | 0.004 | 55.1 |

Typical Chemical Composition of Weld Metal (%)

FCM-132M FCM-134 FCM-134M

*JIS Z 3326 YF4A-G-400 *JIS Z 3326 YF4A-G-400 *JIS Z 3326 YF4A-G-400

For Hardfacing

APPLICATIONS

These metal-based flux cored wires provide highly efficient hardfacing and repair welding. FCM-132M, FCM-134, and FCM-134M wires with shielding gas such as Ar or Ar-20%CO₂ respectively produce 13Cr-2Ni-1 Mo-based, 13Cr-4Ni-based, and 13Cr-4Ni-1Mo based deposited metal.

CHARACTERISTICS

Hardfacing and repair welding on turbine runners, turbine blades, valves, valve seats, rolls, rollers, etc.

GUIDELINES FOR USAGE

- 1. FCM-132M, FCM-134, and FCM-134M wires are used with Ar or 80%+20% $\rm CO_2$ as the shielding gas.
- 2. As a general , it is required preheating at a temperature higher than 150 to 300°C and slow cooling after welding.

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| Brand name | С | Si | Mn | Ni | Cr | Mo |
|------------|------|------|------|------|------|------|
| FCM-132M | 0.07 | 0.40 | 0.74 | 2.09 | 12.7 | 1.06 |
| FCM-134 | 0.07 | 0.38 | 0.57 | 3.96 | 12.5 | - |
| FCM-134M | 0.06 | 0.36 | 0.56 | 3.88 | 11.6 | 0.98 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| Brand name | Tensile
Strength, | Elongation, | Charpy 2V-notch
at 20°C, | Typical Hardness of Weld
Metal (Hv) | | |
|------------|----------------------|-------------|-----------------------------|--|-----------------|--|
| | MPa | 70 | J | As Weld | PWHT 600°Cx2.5h | |
| FCM-132M | 900 | 17 | 22 | 420 | 290 | |
| FCM-134 | 900 | 16 | 18 | 420 | 300 | |
| FCM-134M | 910 | 17 | 33 | 400 | 305 | |

■ SIZES & RECOMMENDED CURRENT RANGE<DC(+)>

| Diameter (| mm) | 1.6 |
|--------------|-----|---------|
| Current
A | F | 200~350 |

Electroslag Welding Materials

Electroslag Welding Materials

| | Specifi | cation | | | | | | |
|-----------------------|-------------------------------|--------|--|--|--|--|--|--|
| Brand
Name | JIS AWS | | Application and Characteristics | | | | | |
| YM-55S
×
YF-15I | ☆Z 3353
YES501-S/
FES-Z | — | Electroslag welding materials of 490MPa high tensile strength steel for diaphragm of steel frames. | | | | | |
| YM-60E
×
YF-15I | ☆Z 3353
YES602-S/
FES-Z | — | Electroslag welding materials of 590MPa high tensile strength steel for diaphragm of steel frames. | | | | | |

| Typic | Typical Chemical Composition of Deosited Metal % | | | | | Typical N | lechanical
Me | s of Weld | | | |
|-------|--|------|------|-------|-------|-----------|---------------------------|-----------------------------|-----------------------|----------------------------------|-----------------------------|
| С | Si | Mn | Ni | Р | s | Mo | Yield
Strength,
MPa | Tensile
Strength,
MPa | Elonga-
tion,
% | Charpy 2 V-notch
at 0°C,
J | Remarks |
| 0.11 | 0.20 | 1.45 | _ | 0.010 | 0.004 | 0.13 | 400 | 560 | 30 | 54 | SN490B 40 mm
1 electrode |
| 0.09 | 0.34 | 1.29 | 1.02 | _ | _ | 0.29 | 460 | 690 | 25 | 80 | SM570Q 50 mm
1 electrode |

YM-55HF × YF-15I

For Electro-slag welding (ESW) material for Building structure steel

APPLICATIONS

The combination of YM-55HF \times YF-15I is Electro-slag welding (ESW) material for BT-HT325C-HF and BT-HT355C-HF of HighHAZ Toughness Steel and TMCP385 of 550MPa High Tensile Strength Steel etc. which are applied between skinplate and diaphragm of Box Columns.

CHARACTERISTICS

This welding method is Simplified Electro-slag welding process with Nonconsumable Elevating Tip. It is provided sufficientpenetration, sound weld joint, excellent tensile strength properties and high toughness in extra high heat Input up to 1,000kJ/cmapprox.

GUIDELINES FOR USAGE

- 1. It should be used Flux: YF-15I (20 \times D mesh) and cut wire: YK-CM (1.0mm \times 1.0) for welding start.
- 2. The amount of consumed flux depends on the plate thickness and the Root gap (groove width). Formula: "The amount of consumed flux" (g) = "The plate thickness" (mm) × "The Root gap (mm)" × 0.08~0.10 (coefficient)

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (ESW) (%)

| С | Si | Mn | Р | s | Mo | Base metal | Plate Thickness
mm |
|------|------|------|-------|-------|------|--------------|-----------------------|
| 0.09 | 0.20 | 1.78 | 0.008 | 0.003 | 0.18 | BT-HT325C-HF | 50 |

■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL (ESW)

| Tensile test | | | | Impa | act test | | Base
metal | Plate
Thickness
mm |
|--|--------------------------|--------------|------------------------|-------------------|----------|---------------|----------------------|--------------------------------|
| Location of specimen: t/2, w/2 ¹⁾ | | | Locat | ion ¹⁾ | Temn | Charpy | | |
| Yield Strength,
MPa | Tensile Strength,
MPa | Elongation % | Specimen | Notch | °C
℃ | 2V-notch
J | | |
| | | 28 | t/2 | w/2 | 0 | 101 | BT-
HT325C-
HF | Diaphragm: 50
Skinplate: 50 |
| 450 | 630 | | | w/4 | 0 | 97 | | |
| 400 | 650 | | 6mm from
surface of | w/2 | 0 | 74 | | |
| | | | diaphragm | w/4 | 0 | 144 | | |

1) t: Thickness of diaphragm, w: Nugget width.

■ TYPICAL WELDING CONDITIONS (ESW) *Wire dia.: 1.6mm

| Plate
Thickness
mm | Welding
current
A | Voltage
V | Travel
speed
cm/min | Heat
input
kJ/cm | Wire
feeding rate
m/min | Ammount of
consumed flux
g | Oscillation |
|--------------------------------|-------------------------|--------------|---------------------------|------------------------|-------------------------------|----------------------------------|---|
| Diaphragm: 50
Skinplate: 50 | 380 | 50 | 1.5 | 790 | 8.5 | 120 | •Width: 32mm
•Wait time at both edge: 4sec.
•Freq. : 4 times /min |

Electrogas Welding Materials

Flux Cored Arc Welding Wires

Flux Cored Arc Welding Wires for Electrogas Welding

| Brand | Shield | Specif | ication | Dia. | Anglianting and Observatoristics |
|-------|------------|---------------------|-------------------|------|---|
| Name | Gas | JIS | AWS | mm | Application and Characteristics |
| EG-1 | CO_2 | ☆Z 3319
YFEG-21C | | | FCAW for electrogas to be used with CO_z shield gas for mild steel and 490MPa high tensile strength steel. Arc is stable and bead appearance is beautiful. |
| | Weldin | ng Position | AWS/ASME VU | J/3G | |
| EG-3 | $\rm CO_2$ | _ | ☆A5.26
EG72T•G | 1.6 | FCAW for electrogas to be used with CO_z
shield gas for mild steel and 490MPa high
tensile strength steel. It can be used also for
shipbuilding grade E steel since weld metal
shows excellent mechanical properties. |
| | Weldin | ng Position | AWS/ASME VU | J/3G | |
| EG-60 | CO_2 | ☆Z 3319
YFEG-32C | _ | 1.6 | FCAW for electrogas to be used with CO_2 gas shield for 590MPa high tensile strength steel. |
| | Weldin | ng Position | AWS/ASME VU | J/3G | |

Note : Figure of illustration relating to the symbol of welding position in the table mentioned above.

| | Typic | al Che | | Compos
ld Meta | | | Ту | pical Mechanic
of Weld | | 28 | Туре |
|------|-------|--------|-------|-------------------|------|------|---------------------------|-----------------------------|-----------------------|----------------------------------|---------------|
| С | Si | Mn | Р | s | Mo | Ni | Yield
Strength,
MPa | Tensile
Strength,
MPa | Elonga-
tion,
% | Charpy 2 V-notch
at 0°C,
J | of
Current |
| 0.08 | 0.29 | 1.49 | 0.014 | 0.015 | 0.24 | - | 470 | 640 | 28 | 59 | DC
(+) |
| 0.04 | 0.35 | 1.54 | 0.012 | 0.016 | 0.14 | 0.64 | 509 | 606 | 25 | -20°C
99 | DC
(+) |
| 0.10 | 0.34 | 1.68 | 0.014 | 0.012 | 0.11 | - | 495 | 650 | 29 | −20°C
89 | DC
(+) |

Memo

High Efficiency Welding Process

NARROW GAP SUBMERGED ARC WELDING PROCESS

High Quality and Low Cost Welding Process for Heavy Steel Plates

CHARACTERISTICS

- 1. It is possible to shorten welding time, save welding materials and greatly reduce welding costs.
- 2. Any submerged arc welding machine and power source at hand can be used by just changing the nozzle to a long tip of 8~10mm diameter or a rectangular cross sectional nozzle of 8~10mm width covered by heat proof insulating tape or a tube.
- 3. Mechanical properties of weld metal are the same or better than those of conventional submerged arc welding process.
- 4. High efficiency and better bead appearance are obtained by applying tandem welding with a short distance between electrodes of 7~13mm.
- 5. Gas cut grooves can be welded.

WELDING MATERIALS

| Base metal | Wire | Flux | Characteristics of Flux | | |
|--|--------------|---------|--|--|--|
| ASTM A516 Gr60, 65, 70 | Y-D | | | | |
| ASTM A516 Gr70
ASTM A537 C ℓ 1
ASTM A299 | Y-E
Y-DM3 | NF-1 | Neutral type fused flux
High wire melting speed | | |
| ASTM A533B, A302B | Y-204 | NF-250 | | | |
| ASTM A387Gr11, 12, C ℓ 1, C ℓ 2 | Y-511 | NF-250* | Basic type fused flux | | |
| ACTM A2070-00 C/1 C/0 | Y-521 | NF-250 | Basic type rused nux | | |
| ASTM A387Gr22, C ℓ 1, C ℓ 2 | Y-521H | NB-250M | | | |
| SUS304. SUS304L | Y-308 | BF-350 | Basic type bonded flux | | |
| SUS304, SUS304L | Y-308L | DF-990 | basic type bonded nux | | |

* M Type

STANDARD WELDING CONDITIONS FOR ONE-LAYER TWO-PASS NARROW GAP SUBMERGED ARC WELDING PROCESS

| Groove | Number | Wire | | | Elec- | Weldi | ing Cond | itions |
|------------------------|-----------------|------------|-----|---|--------|--------------|--------------|-----------------|
| Geometry
mm | of
Electrode | Dia.
mm | | Layer | | Current
A | Voltage
V | Speed
cm/min |
| 2° 1 0 0 | | | B.P | 1 (1-pass) | | 500 | 27 (32) | 25 |
| | AC | 4.0 | D,r | $2 \rightarrow \text{Final} \ (2\text{-}\text{pass})$ | Single | 600 | 28 (33) | 30 |
| | Single | 4.0 | F.P | 1 (1-pass) | Single | 500 | 27 (32) | 25 |
| | | | r.r | $2 \rightarrow \text{Final} \ (2\text{-}\text{pass})$ | | 600 | 28 (33) | 30 |
| 154 | | | B.P | 1 (1-pass) | Single | 500 | 27 (32) | 25 |
| | | | | $2 \rightarrow \text{Final}(2\text{-pass})$ | L | 500 | 27 (29) | 50 (55) |
| | AC·AC | 3.2 | | $2 \rightarrow \text{Final } (2 \text{ pass})$ | Т | 500 | 27 (29) | 50 (55) |
| 8 ^R 1
97 | Tandem | 0.4 | | 1 (1-pass) | Single | 500 | 27 (32) | 25 |
| 2° F.P | | | F.P | $2 \rightarrow \text{Final}(2\text{-pass})$ | L | 500 | 27 (29) | 50 (55) |
| 1 - 1 | | | | $2 \rightarrow r mar (2 pass)$ | Т | 500 | 27 (29) | |

Note: 1. Voltage and speed in () are for NF-1 and others for NF-250.

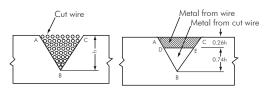
- 2. Distance between electrodes for tandem welding is 10mm.
- 3. Suitable wire center position for two-pass welding is 5~6mm from groove side wall.

STANDARD WELDING CONDITIONS FOR STAINLESS STEEL NARROW GAP SUBMERGED ARC WELDING PROCESS

| Groove | Wire Dia. | | Welding Conditions | | | | | |
|----------------|-----------|-------------------|------------------------------|--------------|--------------|-----------------|--|--|
| Geometry
mm | mm | Layer | Pass | Current
A | Voltage
V | Speed
cm/min | | |
| | | | 1 | 450 | 32 | 45 | | |
| | 4.0 | 1-layer
2-pass | 2~3 | 500 | 32 | 40 | | |
| | | | $4 \rightarrow \text{Final}$ | 550 | 32 | 35 | | |

Note: Flux; BF-350

п

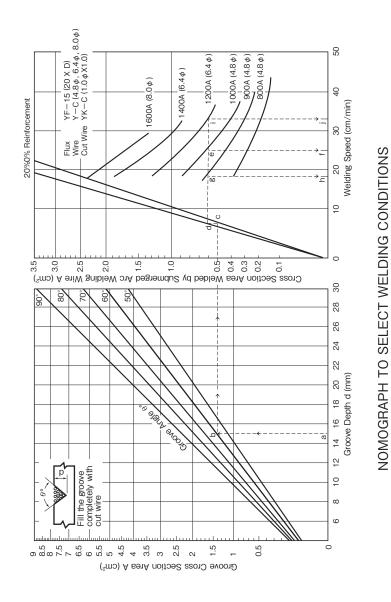


14

CUT WIRE SUBMERGED ARC WELDING PROCESS

High Efficiency Submerged Arc Welding Using Cut Wire

Cut Wire Submerged Arc Welding Process is to carry out submerged arc welding with high efficiency by filling the groove with "cut wire", fine wires of the same chemical composition as submerged arc welding wire chopped to almost the same length as wire diameter.



TYPE OF CUT WIRES

| Brand Name | Тур | ical C | hemica | al Com | positio | on (%) | Flux to be used |
|------------------|------|--------|--------|--------|---------|---------------|-----------------|
| branu Name | С | Si | Mn | Р | S | Others | (mesh) |
| YK-D 0.13 0.01 1 | | 1.87 | 0.010 | 0.014 | _ | YF-15A (20×D) | |
| IKD | 0.15 | 0.01 | 1.07 | 0.010 | 0.014 | _ | NB-55E (12×100) |
| YK-CM | 0.08 | 0.01 | 1.67 | 0.012 | 0.014 | Mo:0.51 | YF-15 (20×D) |
| | | | | | | Cu:0.23 | |
| YK-CNC | 0.11 | 0.07 | 1.69 | 0.011 | 0.002 | Ni:0.10 | YF-15B (20×D) |
| | | | | | | Cr:0.45 | |
| YK-3NI | 0.04 | 0.02 | 1.20 | 0.007 | 0.003 | Ni:2.98 | NB-55LM |

CHARACTERISTICS

- 1. More than double amount of weld metal compared with conventional submerged arc welding is obtained and it is especially suitable for welding thick plates.
- 2. Heat affected zone of the base metal is small and consequently deterioration of toughness is limited.
- 3. Beautiful bead with large leg length is obtained in flat fillet welding and slag is easy to remove.
- 4. Hot temperature cracking can be prevented in the welding of high carbon steel since dilution rate of base metal is low.
- 5. Arc is stable and bead is beautiful even in high current welding.

WELDING PROCESS

14

П

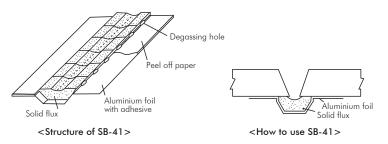
ONE-SIDE WELDING PROCESS

| One-side Welding Process to St | g Various Kinds of Backing Materials | | | | |
|--|--------------------------------------|--|--|--|--|
| Welding I | Process | Backing Materials and Flux | | | |
| Gas shield arc weldin
welding wires and Gas m | SB-41 | | | | |
| | Soft Backing Process | SB-51 | | | |
| Submerged arc welding | Flux Copper
Backing Process | Surface flux NSH-50M
NSH-55EM
Backing flux NSH-1RM | | | |

| Menio |
|-------|
| |
|
 |

274

Memo

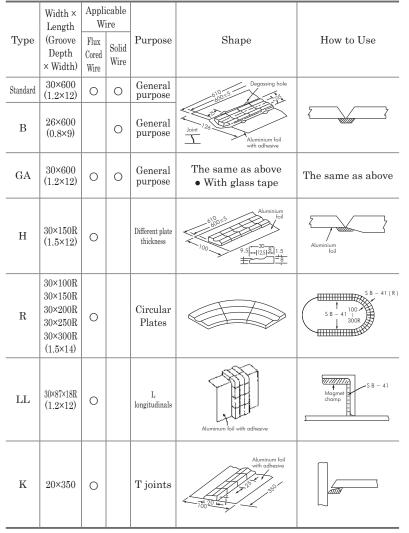

WELDREAN

SB-41

VELD

Backing Material for Gas Shield Arc One-side Welding

SB-41 is a backing material having a structure of tile-like solid flux blocks which are stuck onto aluminium foil in succession.

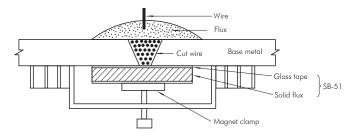

■ RECOMMENDED WELDING WIRES

| Flux cored arc welding wires | SF-1, SF-3, etc. |
|------------------------------|--------------------|
| Gas metal arc welding wires | YM-26, YM-28, etc. |

APPLICATIONS

- 1. It is small and light and consequently is easily set up by sticking adhesive face of aluminium foil to steel plate.
- 2. It can be used by cutting to the desired length and bending up or down since solid fluxes are tile-like and flexible.
- 3. It can be used for uranami (sound penetration bead) welding with a wide range of welding conditions since solid fluxes have high fire resistance.
- 4. Inventory control is easy since it rarely absorb moisture and, therefore, redrying is not necessary.

■ SIZE AND SHAPE



14

Backing Materials

SOFT BACKING SUBMERGED ARC WELDING PROCESS

Soft Backing Process is to carry out one-side submerged arc welding by fitting SB-51, portable and light backing material, to a steel plate using magnet clamps as shown in the figure. Welding is carried out by filling the groove with cut wires in order to minimize the influence of groove gap fluctuation onto the shape of reverse head.

APPLICATIONS

One-side welding where backing jigs cannot be used like welding of curved plates in shipbuilding and site welding of bridges.

CHARACTERISTICS

- $1.\ {\rm Glass}$ tape assures excellent adhesiveness to base metal and an even reverse bead.
- It can be attached by magnet clamps since little push-up strength is required.
 An even reverse bead shape similar to other parts is obtained at joining parts
- An even reverse bead shape similar to other parts is obtained at joining parts of backing materials.
- 4. The concurrent use of cut wire makes it unsusceptible to the fluctuation of groove gap and assures high efficiency.

■ RECOMMENDED WELDING MATERIALS

| Base metal | Welding Process | Flux | Wire | Cute Wire | | | | | | | |
|--------------------------------|--------------------------------------|---------|---|-----------|--|--|--|--|--|--|--|
| | 1 layer welding | YF-15A | Y-D | | | | | | | | |
| Mild steel | 2 electrodes Multi-
layer welding | NSH-50M | $\begin{array}{l} L:Y\text{-}C\\ T:Y\text{-}DL \end{array}$ | YK-C | | | | | | | |
| | 11 11 | NB-55E | Y-D | YK-D | | | | | | | |
| 490MPa | 1 layer welding | YF-15A | Y-D | YK-D | | | | | | | |
| high tensile
strength steel | 2 electrodes Multi-
layer welding | NSH-50M | L : Y-DL
T : Y-DL | | | | | | | | |

TYPICAL WELDING CONDITIONS 1) ONE-LAYER WELDING (NB-55E)(AC)

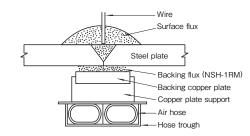
| | Plate
Thickness
mm | Groove
Shape | Wire
Dia
mm | Groove
Gap
mm | Cut Wire
Height
mm | Current
A | Voltage
V | Speed
cm/min |
|--|--------------------------|-----------------|-------------------|---------------------|--------------------------|--------------|--------------|-----------------|
| | 8 | Ι | 4.8 | 0 | - | 800 | 32 | 45 |
| | | | | 3 | - | 700 | 32 | 42 |
| | 16 | 50°V | 6.4 | 0 | 16 | 1100 | 36 | 30 |

2) MULTI-LAYER WELDING WITH TWO ELECTRODES (AC)

| Plate
Fhick-
ness
mm | Groove
Geometry
mm | Layer | Electrode | Wire
Dia
mm | Cut
Wire
Height
mm | Current
A | Voltage
V | Speed
cm/min | Distance
between
Electrodes
mm |
|-------------------------------|--------------------------|-------|-----------|-------------------|-----------------------------|--------------|-----------------|-----------------|---|
| 16 | | 1 | L
T | 4.8
6.4 | 16 | 900
800 | $36 \\ 40$ | 46 | 70 |
| 25 | | 1 | L
T | $4.8 \\ 4.8$ | 15 | 980
700 | $\frac{34}{38}$ | 34 | 70 |
| 20 | | 2 | L
T | $4.8 \\ 4.8$ | 0 | $750 \\ 700$ | $\frac{36}{38}$ | 36 | 30 |

■ TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%)

| | | С | Si | Mn | Р | S | Base
Metal | Plate
Thickness
mm | Welding
Method | Flux |
|---|----|------|------|------|-------|-------|---------------|--------------------------|--------------------------------------|---------|
| - | 1) | 0.14 | 0.25 | 0.96 | 0.014 | 0.005 | KD | 16 | 1 layer
welding | NB-55E |
| | 2) | 0.12 | 0.31 | 1.35 | 0.020 | 0.008 | K32D | 25 | 2 electrodes,
2 layers
welding | NSH-50M |


■ TYPICAL MECHANICAL PROPERTIES OF WELD METAL

| | Yield
Point,
MPa | Tensile
Strength,
MPa | Elonga-
tion,
% | Charpy 2 V-notch
at 0°C,
J | Base
Metal | Plate
Thickness
mm | Welding
Method | Flux |
|---|------------------------|-----------------------------|-----------------------|----------------------------------|---------------|--------------------------|--------------------------------------|---------|
| 1 | 330 | 460 | 39 | 130 | KD | 16 | 1 layer
welding | NB-55E |
| 2 | 430 | 430 540 31 | | 88 | K32D | 25 | 2 electrodes,
2 layers
welding | NSH-50M |

WELDING PROCESS

FLUX COPPER BACKING SUBMERGED ARC WELDING PROCESS

Flux Copper Backing Process is a high efficiency automatic welding process to carry out one-side submerged arc welding by spreading backing flux (NSH^{TM-}1RM) to the thickness of a few millimeters on backing copper plates, as shown in the figure, and sticking the copper plate closely to the reverse surface of the groove using a pushing up device. High speed and high efficiency welding is achieved by using a pushing up device and systematized welding apparatus. Especially, the process with 4 electrodes can increase welding speed as much as 2.5 times high as conventional submerged arc welding process.

APPLICATIONS

Welding of large plates for ships, bridges and structures.

CHARACTERISTICS

- 1. High current can be used since reverse bead height tends to be even due to the copper plate under backing flux layer and fluctuation of reverse bead shape is small.
- 2. Highly efficient and economic welding is possible by systematizing welding apparatus.
- 3. NSH-50M, surface flux, can be used for both mild steel and 490MPa high tensile strength steel.

One-side SAW Welding Material

| Base metal | Wire | Surface Flux | Backing Flux | |
|---|---------------|--------------|--------------|--|
| Mild Steel and 490MPa
high tensile strength
Steel | Y-DL | NSH-50M | NSH-1RM | |
| 490MPa Grade E high
tensile strength Steel | Y-DM3
Y-DL | NSH-55EM | NSH-1RM | |
| Low temperature Service
Steel | Y-3NI | NSH-55L | NSH-1RM | |

TYPICAL WELDING CONDITIONS (3 ELECTRODES)

| Flux | Plate
Thick-
ness
mm | Groove
Geometry
mm | Electrode | Wire
Dia.
mm | Electrode
Tilt
Angle | Current
A | Voltage
V | Speed
cm/min | Distance
Between
Electrodes
mm | Backing
Flux
Height
mm | | | | | | | |
|--------------------------------|-------------------------------|--------------------------|----------------|--------------------|----------------------------|--------------------|--------------------|--------------------|---|---------------------------------|-----|---|------|----|----|--|------------|
| | | _ 60° _ | L | 4.8 | -15 | 1250 | 35 | | 35 | | | | | | | | |
| | 16 | $ $ ∇_{3} | T_1 | 4.8 | 0 | 1000 | 40 | 83 | | $5 \sim 6$ | | | | | | | |
| RM | | <u>~</u> | T_2 | 6.4 | 5 | 850 | 45 | | 120 | | | | | | | | |
| SH-1 | | _ 50° _ | L | 4.8 | -15 | 1350 | 36 | | 35 | | | | | | | | |
| √× I⁄ | 20 | | ∇ | ∇ | ∇ | \bigtriangledown | \bigtriangledown | \bigtriangledown | ∇ | T ₁ | 4.8 | 0 | 1100 | 40 | 68 | | $5 \sim 6$ |
| NSH-50M or NSH-55ENM × NSH-1RM | | | T_2 | 6.4 | 5 | 900 | 45 | | 120 | | | | | | | | |
| 3-HSI | | | L | 4.8 | -15 | 1450 | 36 | | 35 | | | | | | | | |
| Or N | 25 | | T ₁ | 4.8 | 0 | 1250 | 40 | 56 | | $5 \sim 6$ | | | | | | | |
| I-50M | | <u> </u> | T_2 | 6.4 | 5 | 1000 | 45 | | 120 | | | | | | | | |
| NSH | | | L | 4.8 | -15 | 1450 | 35 | | 35 | | | | | | | | |
| | 36 | | T_1 | 4.8 | 0 | 1250 | 40 | 37 | | $5 \sim 6$ | | | | | | | |
| | | <u> </u> | T_2 | 6.4 | 5 | 1250 | 45 | | 120 | | | | | | | | |

Note: NSH-55M is used for three-electrode welding in principle.

■ TYPICAL WELDING CONDITIONS (4 ELECTRODES)

| Flux | Plate
Thick- | Groove
Geometry | Electrode | Wire
Dia. | Electrode
Tilt | Current | Voltage | Speed | Distance
Between | Backing
Flux | | | | | | |
|-------------------|-----------------|-----------------------------------|----------------|--------------|-------------------|---------|---------|--------|---------------------|-----------------|-------|-----|---|------|----|-----|
| | ness
mm | mm | | mm | Angle | A | V | cm/min | Electrodes
mm | Height
mm | | | | | | |
| | | - <u>50°</u> - | ∇ | L | 4.8 | -15 | 1700 | 35 | | 30 | | | | | | |
| | 16 | | | ∇ | \sim | \sim | \sim | \sim | ∇ | ∇ | T_1 | 6.4 | 0 | 1300 | 40 | 150 |
| | 10 | $-\underline{\underline{Y_{13}}}$ | T_2 | 6.4 | -5 | 750 | 40 | 150 | 30 | | | | | | | |
| | | | T ₃ | 6.4 | 10 | 700 | 45 | | | | | | | | | |
| V | | | L | 4.8 | -15 | 1700 | 35 | | 30 | | | | | | | |
| 1RI | 20 | | T_1 | 6.4 | 0 | 1400 | 40 | 100 | | 5~6 | | | | | | |
| -HS | | | T_2 | 6.4 | -5 | 750 | 40 | | 30 | | | | | | | |
| Ň | | | T ₃ | 6.4 | 10 | 750 | 45 | | | | | | | | | |
| NSH-50M × NSH-1RM | | | L | 4.8 | -15 | 1700 | 35 | | 30 | | | | | | | |
| I-20 | 25 | ' | T_1 | 6.4 | 0 | 1400 | 40 | 90 | 200 | 5~6 | | | | | | |
| ISV | | | T_2 | 6.4 | -5 | 1050 | 40 | 00 | 30 | | | | | | | |
| 4 | | | T ₃ | 6.4 | 10 | 950 | 45 | | | | | | | | | |
| | | ¬ 45° − | L | 4.8 | -15 | 1700 | 35 | | 30 | | | | | | | |
| | 36 | | T_1 | 6.4 | 0 | 1400 | 40 | 55 | 200 | 5~6 | | | | | | |
| | | | T_2 | 6.4 | -5 | 1300 | 40 | | 30 | | | | | | | |
| | | ' | T_3 | 6.4 | 10 | 1200 | 45 | | | | | | | | | |

WELDING PROCESS

TYPICAL CHEMICAL COMPOSITION OF WELD METAL (%) 1) NSH-50M × NSH-1RM × Y-DL/Y-DL/Y-DL (3 ELECTRODES)

| С | Si | Mn | Р | S | Base
Metal | Plate
Thickness
mm | Welding Method |
|------|------|------|-------|-------|---------------|--------------------------|--------------------------------|
| 0.13 | 0.23 | 1.17 | 0.018 | 0.004 | KD36 | 20 | 3 electrodes, one-side welding |

2) NSH-55EM × NSH-1RM × Y-DM3/Y-DL/ Y-DL (3 ELECTRODES)

| С | Si | Mn | Р | s | Base
Metal | Plate
Thickness
mm | Welding Method |
|------|------|------|-------|-------|---------------|--------------------------|--------------------------------|
| 0.09 | 0.18 | 1.32 | 0.018 | 0.005 | KE40 | 20 | 3 electrodes, one-side welding |

3) NSH-50M × NSH-1RM × Y-DL/Y-DL/Y-DL/Y-DL (4 ELECTRODES)

| С | Si | Mn | Р | s | Base
Metal | Plate
Thickness
mm | Welding Method |
|------|------|------|-------|-------|---------------|--------------------------|--------------------------------|
| 0.12 | 0.20 | 1.15 | 0.019 | 0.005 | KD36 | 20 | 4 electrodes, one-side welding |

TYPICAL MECHANICAL PROPERTIES OF WELD METAL 1) NSH-50M × NSH-1RM × Y-DL/Y-DL/Y-DL (3 ELECTRODES)

| Yield
Strength,
MPa | Tensile
Strength,
MPa | Elonga [.]
tion,
% | Charpy 2 V-notch
at 0°C,
J | Base
Metal | Plate
Thickness
mm | Welding Method |
|---------------------------|-----------------------------|-----------------------------------|----------------------------------|---------------|--------------------------|--------------------------------|
| 460 | 550 | 27 | 135 | KD36 | 20 | 3 electrodes, one-side welding |

2) NSH-55EM × NSH-1RM × Y-DM3/Y-DL/ Y-DL (3 ELECTRODES)

| Yield
Strength,
MPa | Tensile
Strength,
MPa | Elonga [.]
tion,
% | ${{\rm Charpy 2 V} \cdot {\rm notch} \atop {\rm J} {\rm J}}$ | Base
Metal | Plate
Thickness
mm | Welding Method |
|---------------------------|-----------------------------|-----------------------------------|--|---------------|--------------------------|--------------------------------|
| 490 | 570 | 25 | 120 | KE40 | 20 | 3 electrodes, one-side welding |

3) NSH-50M × NSH-1RM × Y-DL/Y-DL/Y-DL/Y-DL (4 ELECTRODES)

| Yield
Strength,
MPa | Tensile
Strength,
MPa | Elonga-
tion,
% | ${{\rm Charpy 2 V}:} {{\rm notch}\atop {\rm at -20^{\circ}C,} J}$ | Base
Metal | Plate
Thickness
mm | Welding Method |
|---------------------------|-----------------------------|-----------------------|---|---------------|--------------------------|--------------------------------|
| 470 | 550 | 26 | 120 | KD36 | 20 | 4 electrodes, one-side welding |

Welding Machine and Equipment Plasma Machine and Equipment

WELDREAM

WELDREAN

Simplified Travelling Carriage with Various Models

It is necessary to support the weight of the welding torch and maintain wire target position correctly in order to obtain an excellent welding bead in semiautomatic welding. This requires a skilled welder, Carriage hold the welding torch for welding operators and carry out stable welding by travelling and tracking vertical plate by itself. It solves at a stroke, therefore, the problems of welding fatigue and skill required for high quality welding. Carriage are small and convenient welding carriages and there are various types for different purposes and applications. One operator can handle several machines at a time increasing operational efficiency per operator.

APPLICATIONS

Automatization of welding of ships, steel frames, bridges, etc.

CHARACTERISTICS

- 1. Putting stress on portability. Travelling is stable in horizontal fillet welding of even inclined or curved plates since, while the four-wheel carriages travel.
- 2. Little skilled welding technique is required since they travel stably tracking along the vertical plate.
- 3. They are small, light and easy to handle and, therefore, can be used for a wide range of applications.
- 4. Due to an automatic stop mechanism, one operator can handle several Carriage simultaneously assuring high efficiency and labor saving.

RECOMMENDED WELDING WIRES

| Base metal | Brand Name | Type of Wire | |
|--|----------------|---|--|
| Mild Steel and 490MPa
High Tensile Strength Steel | SF-1
SM-1F | Seamless Flux Cored Arc Welding
Wire | |
| | YM-26
YM-28 | Gas Metal Arc Welding Wire | |

| TYPICAL FILLET WELDING CONDITIONS OF SF- | TYPICAL FILLE | T WELDING | CONDITION | S OF SF |
|--|---------------|-----------|-----------|---------|
|--|---------------|-----------|-----------|---------|

| | Wire Dia. | Leg Length | Wel | ding Conditio | ons |
|-------------------|-----------|------------|--------------|---------------|-----------------|
| Position | mm | mm | Current
A | Voltage
V | Speed
cm/min |
| | | 4 | 220 | 27 | 70 |
| | 1.2 | 6 | 270 | 29 | 50 |
| | | 8 | 300 | 30 | 35 |
| | | 4 | 260 | 28 | 70 |
| Horizontal fillet | 1.4 | 6 | 320 | 31 | 50 |
| | | 8 | 350 | 33 | 35 |
| | | 4 | 300 | 29 | 80 |
| | 1.6 | 6 | 350 | 32 | 50 |
| | | 8 | 400 | 34 | 35 |
| | 1.2 | 6 | 280 | 29 | 50 |
| Flat fillet | 1.2 | 8 | 280 | 29 | 40 |
| | 1.4 | 14 | 380 | 38 | 20~23 |

*** 1 1.

a 1...

15

Welding Machine and Equipment

High Efficiency Electroslag Welding Machine

Utilizing Non-consumable Nozzle

This welding machine (Simplified Electroslag Non-consumable Elevating Tip) is a simplified electroslag welding machine with a non-consumable nozzle and a nozzle elevating mechanism. Welding performance and operation efficiency are greatly improved in butt welding of comparatively thin and short T joints by the combined use of a fine diameter solid wire.

APPLICATION

Vertical welding of diaphragms and connection joints of steel frames, bridges and longitudinals of ships.

FEATURES

- 1. High-efficiency, water supply type electro-slag welding machine with nonconsumable nozzle.
- 2. The weaving equipment can weld $19\mathchar`-65mm$ thick plates.
- 3. Non-consumable nozzle rises automatically as welding progresses, thereby enabled unmonitored welding after start.

MODEL

Welding Machine and Equipmen

15

| Number of Electrodes | Machine Weight | Recommended Power Source |
|----------------------|----------------|--------------------------|
| 1 | 17kg approx. | 600A (DC) |

RECOMMENDED WELDING MATERIALS

| Base metal | Wire | Flux |
|---------------------|-----------------------|--------|
| Mild steel and 490, | YM-55S (1.6 ϕ) | |
| 590MPa high tensile | YM-55HF (1.6 ϕ) | YF-15I |
| strength steel | YM-60E (1.6 ϕ) | |

■ TYPICAL WELDING CONDITIONS

| Groove | | Thick-
mm | Gap
(G) | Current | Voltage | Wire Feed
Speed | Welding
Speed |
|------------|-------|--------------|------------|---------|---------|--------------------|------------------|
| Geometry | T_1 | T_2 | mm | А | V | m/min | mm/min |
| | 20 | 20 | 25 | 380 | 46 | 8.5 | 34 |
| T2 + G+ T1 | 50 | 60 | 25 | 380 | 52 | 8.5 | 14 |
| | 60 | 100 | 25 | 380 | 54 | 8.5 | 12~14 |

Standard Specifications *Upgraded function Nozzle elevating drive unit

| Input voltage | AC100V±10% 50/60Hz |
|------------------|----------------------------------|
| Drive system | Friction drive by rubber rollers |
| Drive speed | 0 to 300mm/min |
| Angle Adjustment | ±3° |

*Notched rollers control nozzle slippage.

*Increased strength of the angle adjustment part stabilizes the welding aiming position.

*A speed control motor stabilizes the raising speed.

Nozzle position adjustment range

| Vertical direction | 200mm |
|----------------------|-------|
| Left/right direction | 150mm |
| Front/back direction | 65mm |
| Turning angle | 200° |
| | |

Weaving unit

| Weaving type | Round trip simple vibration |
|-----------------|------------------------------------|
| Amplitude width | 5 to 60mm |
| Weaving cycle | 0 to 8times/min(at max. amplitude) |
| Stop position | Both ends of the amplitude width |
| Stopping time | 0 to 10sec(1sec pitch) |

*A speed control motor stabilizes the weaving speed.

*The next setting time is shortened by the center return function.

Non-consumable nozzle

| Coolant type | Water cooled |
|---------------------------|-----------------|
| Rated current | 500A |
| Use ratio | 100% |
| Application wire diameter | φ1.6mm |
| Nozzle diameter | φ14mm |
| Nozzle length | 1,000 to |
| | 1,600mm(welding |
| | length+350mm) |

*Deflection is reduced by increased strength. *Analog control has been improved to digital control.

*Defect detector and automatic stop function.

Electrogas Arc Welding Machine

high-efficiency vertical automatic welding machine (Electrogas arc welding machine)

This is a high-efficiency one-pass vertical welding method that feeds 1.6mm diameter wire in the direction of the thickness of steel plate. The welding carrige automatically ascends while keeping a given wire extension.

FEATURES

- 1. Can perform single pass vertical welding of plate thickness of 12 to 28mm.
- 2. Weighs Approx.22kg including weaver and features easy operation to make it ideal for on-site welding.
- 3. Automatic welding speed control offers uniform welding bead for gap variation.
- 4. Because surface bead is determined by groove shape of sliding copper plates, can form pretty bead with minimal height.
- 5. Able to form uniform, pretty back bead using SB-60V solid backing material.

Standard Specifications

Traveling carriage unit

| Input voltage | AC200V±10% 50/60Hz | |
|---|---|--|
| Traveling method | Rack & pinion | |
| Traveling speed | max.500mm/min | |
| Traveling control | Automatic elevation control by welding current detection | |
| Clutch mechanism | Equipped(when the clutch is released, manual push
traveling is possible) | |
| Torch setting adjustment | Vertical adjustment: ±20mm
Horizontal: ±30mm
Plate thickness direction: ±20mm | |
| Traveling rail | 1.5m/each | |
| Coolant constant contact sliding copper plate | Water cooled type | |
| External dimensions(mm) | 665(W)×360(L)×365(H) | |
| Weight | Approx.22kg | |
| Weaving unit | | |
| Weaving type | Round trip simple vibration | |
| Amplitude width | 0 to 20mm | |
| Stop position | Both ends of the amplitude width | |
| Stopping time | 0 or 0.1 to 3sec. | |

RECOMMENDED WELDING MATERIALS

| | W | ire | D 1. | Shield Gas
L/min | |
|---|-------------|--------------------|--|----------------------|--|
| Base metal | Brand Name | Type of
Current | Backing
Material | | |
| Mild steel.
490MPa high
tensile strength
steel | EG-1(1.6Φ) | DC (+) | Glass tape
+copper plate
or SB-60V | CO ₂ , 30 | |
| Grade E steel | EG-3(1.6Φ) | DC (+) | | 0.02, 50 | |
| 590MPa high tensile
strength steel | EG-60(1.6Φ) | | | | |

TYPICAL WELDING CONDITIONS

| Plate
Thickness
mm | Groove
Geometry
mm | y | Current
A | Voltage
V | Speed
cm/min | Heat
Input
kj/cm | Oscil
Width
mm | lation
Frequency
n/min |
|--------------------------|--------------------------|----|--------------|--------------|-----------------|------------------------|----------------------|------------------------------|
| 12.7 | *** | | 340 | 35~37 | 11~12 | 60~70 | 0~1 | 60~80 |
| 16 | | | 380 | 38~40 | 11~12 | 70~80 | 0~4 | 60~80 |
| 20 | | | 400 | 40~42 | 11~12 | 80~90 | 4~8 | 60~80 |
| 25 | | | 400 | 40~42 | 10~11 | 90~100 | 8~12 | 60~80 |
| 25 | | BP | 340 | 35~37 | 12~13 | $55 \sim 65$ | 0~1 | 60~80 |
| 20 | | FP | 330 | 34~36 | 12~13 | 55~65 | 1~3 | 60~80 |
| 36 | 5 | BP | 400 | 40~42 | 13~14 | 70~80 | 2~6 | 60~80 |
| | | | 400 | 40~42 | 13~14 | 70~80 | 6~8 | 60~80 |

15

Welding Machine and Equipment

Two Electrode Electrogas Arc Welding Machine

High-efficiency vertical automatic welding machine (Electrogas arc welding machine)

This is similar to single-electrode type Electrogas arc welding machine except the two electrodes are disposed across the thickness of steel plate. Flux cored wire and solid wire are used as the electrodes on cap side and root side. Compared with single-electrode method, this method permits much more efficient welding with extra-heavy steel plates ranging from 40 to 80mm in thickness, reduces man-hours, and increases the reliability of welded joints.

FEATURES

- 1. Vertical position single-pass welding of plates of 40 to 80mm thickness is possible.
- 2. Higher quality and performance, compared to single-electrode welding, is achieved.
- 3. Simultaneous weaving of both electrodes in the plate thickness direction stabilizes penetration.
- 4. Performing welding under automatic elevation control by welding current detection reduces operator monitoring time.
- 5. Forming uniform and beautiful penetration beads is possible using the fixed back material, SB-60VT.

Standard Specifications

Traveling carriage unit

| naveling carriage onli | | | |
|---|---|--|--|
| Input voltage | AC200V±10% 50/60Hz | | |
| Traveling method | Rack & pinion | | |
| Traveling speed | max.500mm/min | | |
| Traveling control | Automatic elevation control by welding current detection | | |
| Clutch mechanism | Equipped(when the clutch is released, manual push traveling is possible) | | |
| Torch setting adjustment | Vertical adjustment: ±20mm
Horizontal: ±30mm
Plate thickness direction: ±20mm | | |
| Traveling rail | 1.5m/each | | |
| Coolant constant contact sliding copper plate | Water cooled type | | |
| External dimensions(mm) | 565(W)×705(L)×405(H) | | |
| Weight | Approx.25kg | | |
| Weaving unit | | | |
| Weaving type | Round trip simple vibration | | |
| Amplitude width | 0 or 2 to 50mm | | |
| Stop position | Both ends of the amplitude width | | |
| Stopping time | 0 or 1 to 5sec. | | |

Option Specifications

Wire feeding rate, digital display

| Wire feeding rate | 0.0 to 50.0m/min |
|-------------------|------------------|
| | |

■ EXAMPLES OF WELDING CONDITION

| Plate
thickn
mm | ess | Brand
name of
wire | Electerode | Current
A | Voltage
V | Speed
cm/min | Heat
input
kJ/cm | Oscillatory
width
mm |
|-----------------------|-----|--------------------------|------------|--------------|--------------|-----------------|------------------------|----------------------------|
| 50 | 50 | EG-3T | Cap side | 390 | 42 | 6.8 | 282 | 5 |
| | | YM-55H | Root side | 370 | 42 | | | |
| 60 | 60 | EG-3T | Cap side | 390 | 42 | 6.0 | 319 | 15 |
| 60 | | YM-55H | Root side | 370 | 42 | 0.0 | 519 | 10 |
| 70 | 70 | EG-3T | Cap side | 390 | 42 | 4.5 | 426 | 25 |
| 70 | | YM-55H | Root side | 370 | 42 | 4.0 | 420 | 20 |

RECOMMENDED WELDING MATERIALS

| Ele | ectrode | Wire Brand name | Backing Material | Shield Gas ({/min) | |
|-----|---------|-----------------|------------------|--------------------|--|
| Ca | p side | EG-3T | SB-60VT | CO 25 40 | |
| Ro | ot side | YM-55H | SB-60V1 | $CO_2, 35 \sim 40$ | |

Oscillatory direction

Veld meta

2nd electrode

Sliding copper shoe Shielding gas

Cooling water

Base

Welding

Backing

15

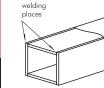
Welding Machine and Equipment

High Heat Input Submerged arc Welding Equipment

High Efficiency and High Quality Welding of Box Column Corner Joint

The size of box columns became larger as steel structures became taller and larger and this welding equipment was designed to carry out the welding of the corner joints of box columns with efficiency and stable quality. The mechanism to provide especially stable welding is built into the equipment since there are connection joints which require full penetration and long welding lines in the corner welding of thick plates. Adoption of the twin-tandem process using high current assures good operational efficiency and welding joints without defects.

CHARACTERISTICS


- 1. Stable bead with deep penetration and little distortion is obtained since corners of both sides of column are welded at the same time with high current.
- 2. A built-in preset type welding current adjustment unit makes observation of multiple eletrodes easy.
- 3. Proper amount of flux is supplied to the proper place by the combined mechanism of automatic flux supply and recovery unit and a unique flux hold mechanism.
- 4. It is equipped with a high performance tracking device to detect groove position accurately.
- 5. It can be used for the welding a wide range of box columns from 400mm to 1600mm.

RECOMMENDED WELDING MATERIALS

Diaphragm

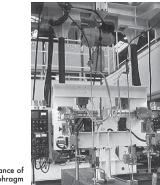
| Base metal | Wire | Flux | Remarks |
|--|----------------------|---------|---|
| Mild steel and
490MPa high
tensile strength
steel | Y-DL
(4.8, 6.4mm) | NSH-60S | Single-layer welding of plates up to about
65mm thickness. |

VELDREA

Corner

Diaphragm Welding Equipment

Electroslag Equipment for Automatizing Welding of Box Column Diaphragms


Diaphragm Welding Equipment mounts several our unique non-consumable type electroslag welding machines and assures increased efficiency and stable quality in the welding of diaphragms.

CHARACTERISTICS

- 1. Welding of both sides of diaphragm at the same time decreases distortion.
- 2. It is one-pass high efficiency welding using a fine diameter (1.6mm) solid wire.
- 3. It has an oscillation mechanism and, therefore, is applicable for a wide range of plate thicknesses (Applicable diaphragm thickness: 19-65mm).
- 4. One operator can handle several equipment since arc start is easy and welding conditions are automatically controlled.

<Multi-heads Diaphragm Welding system>

<External appearance of Diaphragm Welding Equipment>

15

15

Welding Machine and Equipment

PANEL LINE PRODUCTION FACILITY

A panel line is a production line of parallel blocks used in shipbuilding. We, NIPPON STEEL WELDING & ENGINEERING CO., LTD., have supplied many panel line production facilities in domestic and overseas markets and are able to provide welding facilitied, welding technology and materuals. We provide our customers with a series of system engineering from welding of plates to the assembling of big structures including a layout which matches the production amount and transportation.

ONE-SIDE WELDING APPARATUS

1. It is possible to perform exellent quality welding with high efficiency providing a beautiful surface and reverse from one side. (No device for reversing large plates is necessary.) It is applicable for either three-electrode or four-electrode one-side welding apparatus.

Applicable plate thickness: $10 \sim 40 \text{mm}$

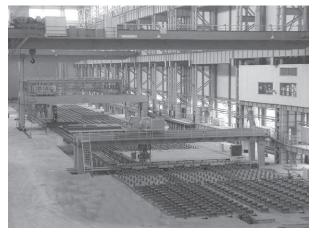
Welding length:30m max (the longest we have supplied)Welding speed:1.5m/min (four-electrode one-side weldingequipment at plate thickness 16 mm)

- 2. It is possible to weld with ease even plates with different thicknesse due to the special backing copper plates and backing mechanism.
- 3. Flux on the reverse side is scraped off by a scraper and automatically dumped by a conveyor.
- 4. Surface side flux is automatically recirculated.
- 5. Many methods have been developed and actually used for starting and ending treatment in the one-side welding method, such as slit-tub, cascade, gas heating at the ending point, etc., and two types of welding conditions, cascade and slit-tub methods, are preset in our one-side welding apparatus. It is possible, therefore, to carry out welding with fewer defects by selecting the appropriate method, depending on the plate thickness being welded.
- 6. Welding conditions for different plate thicknesses have been preset for each plate thickness and, therefore, the apparatus is easily set automatically by just accessing the plate thickness.
- 7. After the starting of welding, the panel line welding equipment automatically carries out a series of unattended operations from the stopping of welding to the moving of the truck.
- 8. A platform has been installed on a gantry girder so that the changing of wire and supplying of flux can be carried out easily.

INSPECTION AND MAINTENANCE STAGE

- 1. An inspection and maintenance stage can be moved by rollers so that the entire reverse welding line of the one-side welding can be confirmed (in order to remove obstacles).
- 2. It is also equipped with a lighting unit.

LONGITUDINAL WELDING APPARATUS

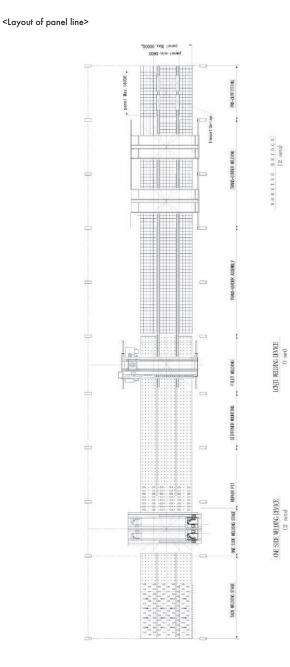

- 1. The twin tandem welding process assures high speed welding with a beautiful bead apperance.
- Welding speed: $1.1 \sim 1.2$ m/min (leg length: $5 \sim 6$ mm)
- 2. Drain holes are detected by a special detector and [ON/OFF] of welding is automatically carried out.
- 3. Each of the welding machines stops welding when detecting the ending of the longitudinal.
- 4. The environment of the workshop is maintained clean by a fume collector.
- 5. Welding conditions have been preset for each leg length and are set automatically by accessing the leg length.

WORKING BRIDGE

- 1. It is difficult to bring welding machines into a block where transverse bulkheads and girders have already been tack welded. The working bridge is a simplified apparatus to solve this problem and to improve workability.
- 2. No complicated handling of cables is necessary since power sources have been installed on the bridge. Also, welding current is grounded to rails.
- 3. The working bridge is of an L type in order to secure working places and spaces to place transverse bulkheads.

ELECTRIC CAPACITY

In general, electric energy used in one panel line is about 2,000 KVA (one unit with 3 electrodes for one-side welding and 16 \sim 20 electrodes for longitudinal welding), but it increases by about 300 KVA if four electrodes are applied in one-side welding.


<Image photo of panel line>

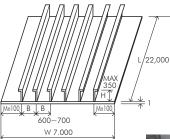
15

Welding Machine and Equipment

VELDREA

Welding Machine and Equipment

Multi-electrode Automatic Welding Equipment


High Efficiency Horizontal Fillet Welding with Multi-electrode Welding Equipment Applying Twin-single/Twin-tandem Welding Process

■ IN THE CASE OF 10/20-ELECTRODE AUTOMATIC WELDING EQUIPMENT

10/20-electrode Welding Equipment has five Twin-single/Twin-tandem welding heads and carries out the horizontal fillet welding of longitudinals or stiffeners of large structures for ship, bridges, etc.

SPECIFICATION

| Welding process | Twin-single/Twin-tandem CO ₂ horizontal fillet welding, 4.5~7.0mm |
|----------------------------|---|
| weiding process | leg length |
| Welding materials | SF-1, SM-1F, 1.6mm dia., 200kg pay-off pack with a remaining quantity detector on 1.6 |
| Tracking | Contact type detector |
| Welding end detector | Optical sensor |
| Gantry carriage | 2-motor drive method |
| Welding head carriage | 5 units |
| Welding conditions setting | LCD touch switches |
| Error message | Message indication on the screen |
| Operation method | Entirely by the operational pendant at hand |
| Welding power source | 600A (DC) |

<Structure to be welded>

<External Appearance of Multi-electrode Automatic Welding Equipment>

One-side SAW Welding Equipment

Side Flow Magnet Type Flux Copper Backing Process

This is one-side submerged arc welding equipment for joining large steel plates. Two seams of maximum 24 meter length plates, 24.6 meters including tab plates, are welded at a time.

CHARACTERISTICS

- 1. The travelling girder is integrated to backing plate carriage and, therefore, the equipment is of very simple structure.
- 2. Two travelling girders, each of them equipped with 3 electrodes, weld steel plates of 10~40mm thickness, 2~5m apart and a maximum of 15mm thickness difference in one run. It is designed to make it possible to change the welding head to four electrodes.
- 3. Welding conditions are preset. Once welding is started by retrieving the necessary information by the plate thickness code number, the entire operation to the end of the seam proceeds without supervision.

■ RECOMMENDED WELDING MATERIALS

| Base metal | Wire | Surface Flux | Backing Flux |
|---|---------------|--------------|--------------|
| Mild steel and 490MPa • high tensile strength steel | Y-DL | NSH-50M | NSH-1RM |
| 490MPa Grade E high tensile
strength steel | Y-DM3
Y-DL | NSH-55EM | NSH-1RM |
| Low Temperature service steel | Y-3NI | NSH-55L | NSH-1RM |

Flux Copper Backing

Submerged Arc Welding Process.

The ship classification material approval list of One-Side Submerged Arc Welding Materials is referred to Section 17.2).

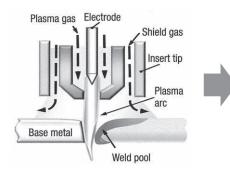
|
 |
|------|
|
 |

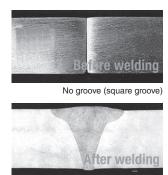
15

15

Memo

А Ш

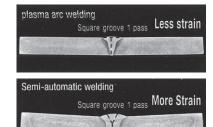

VELDR


FULL DIGITAL PLASMA WELDING MACHINE

Characteristics of plasma welding

Feature 1

One pass welding from one side (Keyhole Welding)


Cross section of SUS304 (Plate thickness: 10mm)

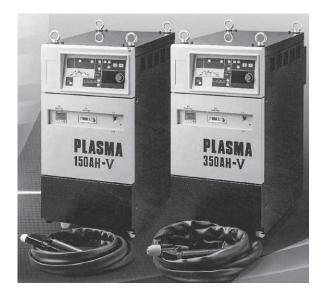
For square grooves, one pass welding from face side to reverse side is realized by way of keyhole.

It is possible to weld mild steel material of up to 6mm thickness and stainless steel material of up to 10mm thickness by one pass.

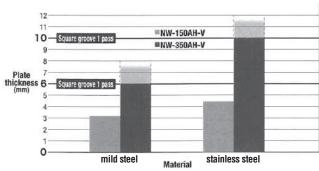
Feature 2

Less strain

A high energy-density arc enables high speed, low distortion welding.


| 6 advantages of full digital plasma | welding machine |
|---|---|
| Function-1 Standard Instralled Disconnection detection function for torch hose cable Image: Comparison of the presence of the p | Standard Instralled Welding conditions presets Image: standard instralled Image: st |
| Function-3 Standard Instralled | Function-4 Option |
| DS-PLASMA mode Standerd
Installed
For galvanized
sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet
Sheet | <text><text><text></text></text></text> |
| Function-5 Option | Function-6 Option |
| Network communication
function | Water-leakage prevention during
tip maintenance |
| The digital (numerical) communication of necessary
data is available by way of network communication.
The individual differences of welding equipment
are reduced, realizing a simplified environment for
connecting to external equipment.
% A separate communication unit is required. | Work efficiency is improved by preventing water
leakage when the insert tip is removed. Clogging of
the torch is reduced by way of cleaning with high-
pressure gas fed through the cooling water path.
%A filtered air feed is needed.
%Water has remained a little in torch by degree of air
pressure and draining time. |

15


PLASMA Machine and Equipment

Specification

| Model | | NW-150AH-V | NW-350AH-V | |
|---------------------------|-------|---|------------|--|
| Input voltage | V | 3Φ AC 200/220V ±10% 50/60 Hz | | |
| Rated output current | А | 150 350 | | |
| Output current range | А | 5-150 | 10-350 | |
| Rated input | KVA | 10.5 | 22.6 | |
| Rated duty cycle | % | 7 | 0 | |
| Maximum no-load voltage | V | 70 | | |
| Rated load voltage | V | 31 | 39 | |
| Control method | | IGBT inverter control constant current syst | | |
| Output characteristic | | constant current characteristic | | |
| Cooling method | | Forced air cooling | | |
| Outside dimensions(W×D×H) | mm | 400×690×840 | | |
| Weight | kg | Approx.70 | | |
| Pulse frequency | Hz | 0.5~999 | | |
| Pilse width | % | 15~85 | | |
| Pilot gas flow rate | ℓ/min | 0.1~5.0 | | |
| Shield gas flow rate | ℓ/min | 0.5~25(internal SG flow rate adjustment unit) | | |

Applicable thickness

%Please consult us when considering welding mild steel material of 6 mm or more, and stainless steel material of 10 mm or more.

WELDREAM

PLASMA Machine and Equipment

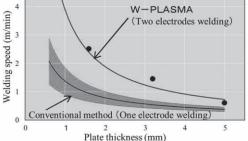
TWO ELECTRODES PLASMA ARC WELDING MACHINE -W-PLASMA Welding-

PRINCIPLE

VELDREAN

Two electrodes plasma arc welding method is how to weld by two electrodes plasma arcs. It is possible to perform welding which is free from undercuts even at high speeds, since even if undercuts generate in the preceding arc, the surface beads will be made even by the following arc.

CHARACTERISTICS


- 1. More than twice high speed welding has been realized compared with conventional method by two electrodes plasma welding.
- 2. High speed welding has been realized by striking two plasma arcs in a short distance. In addition, high quality welding can be performed by the combination with a fully digitalized plasma welding machine, .
- 3. Due to the unitization of welding tips, maintenance can be carried out as easily as with conventional torches.
- 4. The shape of the torch is simple and straight. Therefore it can easily be attached to welding jigs such as robots and so on.

Welding speed

5

Example of shaped I type butt welding for mild steel

W-PLASMA

In comparison with conventional methods, two electrodes plasma welding can obtain more than twice faster welding speed.

PLASMA WELDING MACHINE FOR GALVANIZED STEEL SHEET

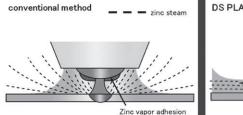
(DOUBLE SHIELD GAS PLASMA WELDING MACHINE = DS PLASMA)

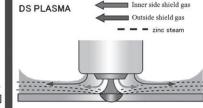
APPLICATION

Galvanized steel sheet

CHARACTERISTICS

In case of conventional plasma welding method, it was impossible to realize stable welding for galvanized steel sheet during a long work time. That's why zinc steam from galvanized steel sheet was attached to insert tip.


This DS plasma welding method has realized stable welding during a long work time by blowing zinc steam away with double shield gas flow.

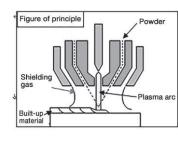

Moreover this method has also realized flat and beautiful bead appearance

•Plasma welding machine model: NW-350AH- II-DS

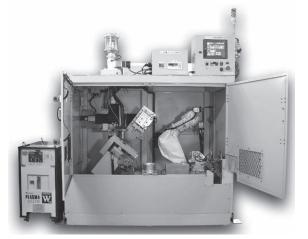
• Plasma welding torch model: 107WH-DS

PLASMA Machine and Equipmen

WELDREAM


Plasma Transferred Arc Welding Equipment

Plasma transferred arc (PTA) welding is used to build up very hard material that normally cannot be molded into welding wire. The principle is to feed powder, which is build-up material as shown in the figure, into the plasma arc by carrier gas (Ar gas) to be welded and built up.

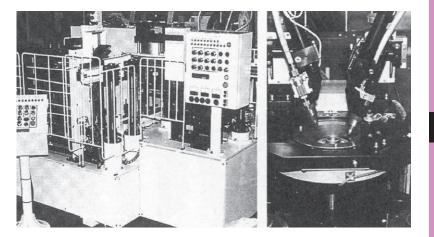

Plasma transferred arc welding has many features, such as enabling individual control of the heat source and filler metal (powder), which makes it easier to set the dilution amount and the surplus amount to the base metal, resulting in build-ups of a wide range (from thin to thick).

CHARACTERISTICS

- 1. You can control the penetration quantity into the base metal.
- 2. A wide range of build-ups can be achieved.
- 3. It is easy to control the build-up welding quantity.
- 4. No slag is generated in an inert gas atmosphere, and high quality build-up can be achieved.

Circumferential Fillet Welding Equipment

High Quality Plasma Welding with Little Welding Distortion


Circumferential Fillet Welding Equipment consists of a work conveying index table, a work clamp unit, a welding unit and a wire feed unit, and carries out plasma welding of a fillet joint of a gear and shaft pressed in by pressure. The fillet is welded by adding a filler wire and, therefore, any required leg length can be obtained.

APPLICATION

Welding of various gears such as motorcycle pulleys.

CHARACTERISTICS

- 1. Semicircular welding by two torches facing each other drastically decreases welding distortions.
- 2. Welding defects such as pits and cracks do not occur since a pilot plasma arc blows off machine oil even if it is adhered to groove surface.
- 3. No spatters means no after treatment.
- 4. No defects occur at bead overlapping parts due to crater treatment.

VELDREAN

15

15

PLASMA Machine and Equipmen

Pipe Overlap Fillet Welding Equipment

High Quality Welding of Overlap Joints by Plasma Welding

Pipe Overlap Fillet Welding Equipment consists of a work conveying unit, a welding unit and a control unit, and carries out circumferential plasma welding of an overlap fillet of a pipe pushed in to a boss. Work is conveyed by a quadrisecting index table and various sizes of pipes are produced by the onetouch exchange of a copper center pin fitted to the index table.

APPLICATIONS

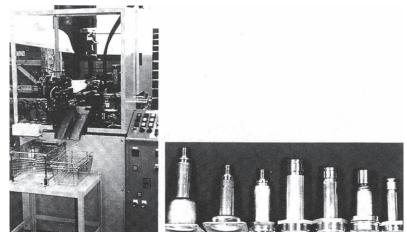
Overlap fillet welding of various pipes.

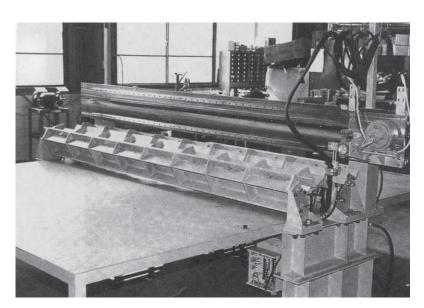
CHARACTERISTICS

- 1. A welding bead without spatters is obtained since the equipment is used in the combination with a plasma welding machine.
- 2. It assures welding with little distortion.
- 3. A beautiful bead without oxidation is obtained by the after shield.
- 4. Wearing down of the electrode is very low making continuous operation for long hours possible and, therefore, high operation efficiency is assured.

Flat Plate Butt Welding Equipment

High Quality Welding of Seam Joints by Plasma Welding


Flat Plate Butt Welding Equipment consists of a torch travelling unit, a work clamp unit and a control unit, and carries out plasma welding of butt seam of thin plates. A high quality bead with little distortion is obtained in high speed welding due to unique air clamps to restrain the work uniformly along the total length of the welding line.


APPLICATIONS

Butt welding of flat plates of various panels.

CHARACTERISTICS

- 1 It carries out perfect uranami (sound penetration bead) welding without spatters and with little distortion.
- 2. Beautiful surface and reverse beads without oxidation are obtained by after shied and back shield.
- 3~ It can weld plates of a wide thickness range from 0.2mm to 2.0mm.
- 4. Maximum welding length is 3,000mm.
- 5. Welding of SUS and Fe type materials is possible.
- 6. Unique air clamps restrain even extremely thin plates perfectly and easily.

15

308

NELDREA

VELDREAM

Simplified Plasma Seam Welding System

Plasma welding machines are also widely used in the tank industry (SUS, SS materials).

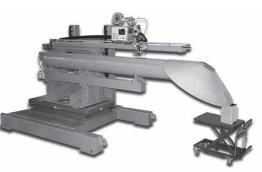
The key reasons why plasma welding machines are employed are their capability of single-sided single-pass full penetration welding by keyhole, and that welding distortion is small.

As a new product, we have developed and commercialized a simplified plasma seam welding device for a head plate (a conical member attached as a lid on both sides of a tank) for which automatic welding had not been possible previously.

APPLICATIONS

Seam welding of inner and outer bodies of stainless pots and jars, washing machine tubs, automotive mufflers and other cylindrical objects.

CHARACTERISTICS


1. Automatic seam welding of the head plate possible It was structurally difficult to weld the head plate with conventional pipe seam welding equipment (clamp seamer).

This simplified plasma seam welding device enables welding of a conical workpiece such as a head plate by adopting a structure that only needs to place (or hang) the workpiece.

2. Non-clamp welding possible

In conventional but welding, it is common to perform welding while the workpiece is being restrained with jigs from the front side and the opposite side, as in the clamp type shown to the right.

In contrast, in this device, welding with non-clamping is enabled due to low strain welding by keyhole and utilization of workpiece stiffness by cylindrical forming and tack welding (however, depending on required quality, distortion removal may be necessary.)

3. Simple structure achieves low price

Unlike a clamp seamer, this device does not require a mechanism to clamp the workpiece, so the device structure can be simplified, the device enabling to be provided at a lower price than the clamp seamer. Furthermore, the surroundings of the torch are structurally open, which is favored by customers who wish to monitor the arc condition.

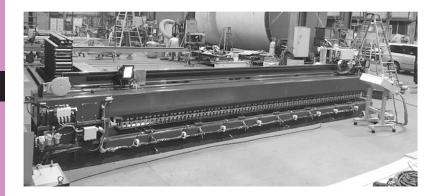
- 4. Movable back shield mechanism (National patent number: 6376664)
- In the conventional back shield, a gap is formed between the work piece and the backing plate when back shielding is applied to a material whose curvature changes continuously such as a head plate, because of the structure that applies the backing plate to the whole welding line, making it difficult to completely protect the back bead with a shielding gas.

This device has a backing mechanism that moves in conjunction with the torch and is in close contact with the workpiece, providing a more complete back shield effect. Furthermore, the resulting local shield reduces gas consumption as compared to the conventional methods.

NELDREAN

Clamp Seam Welding System (6.2m type)

High Quality and High Speed Plasma Welding of Seam Joints

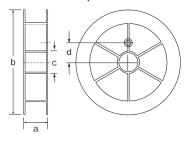

Flat Plate and Pipe Seam Welding Equipment consists of a torch travelling unit, a work clamp unit, a wire feed unit and a groove line monitor unit, and carries out the one-side keyhole welding of 1.0~8.0mm I groove joints. A high quality bead with little distortion is obtained in high welding speed due to unique air clamps to restrain the work uniformly along the total length of the welding line.

APPLICATIONS

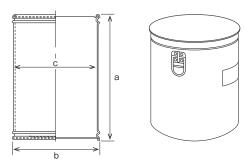
Joining of plates for various large tanks (production of panels). Seam welding of tanks for beer, milk, lactic acid beverages, high pressure gases, etc.

CHARACTERISTICS

- 1. Possible to correspond to a maximum weld length of 6.2 m (conventionally 5.2 m is the maximum)
- 2. Possible to check arcs and grooves with a monitoring camera Easy to check the condition of the terminal groove adjustment in long distance welding
- 3. Possible to check the grooves with a camera at the time of work set for inner surface welding
- 4. Possible to weld the inner surface of the tank (minimum ϕ 1,500 mm)
- 5. Possible to weld dimpled plate with optional parts
- 6. Automatic adjustment of standoff by height copying
- 7. Shortened welding condition search time by pre-installation of welding basic conditions
- 8. Reduction in usage of back shielding gas by controlling the effective range according to welding position

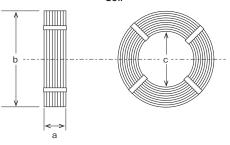

Packaging

-Spool -Drum (Pail Pack) -Coil -Palletized Packaging


SPOOL & DRUM TYPES

| Plastic sp | Plastic spool & Drum (Pail pack) (unit: mn | | | | | |
|------------|--|------|-----------|----------|------------------------|------------------------|
| | Spool type | | Drum type | | | |
| | | | 12.5kg | 100 type | 200 type | 300 type |
| | 5kg | 10kg | 15 kg | (100- | $(200 \cdot 250 \cdot$ | $(300 \cdot 350 \cdot$ |
| | | | 20kg | 170kg) | 300kg) | 400kg) |
| а | 55 | 103 | 103 | 505 | 823 | 772 |
| b | 202 | 225 | 270 | 520 | 520 | 670 |
| с | 52 | 52 | 52 | 500 | 500 | 650 |
| d | 44.5 | 44.5 | 44.5 | _ | _ | _ |

Spool


Drum

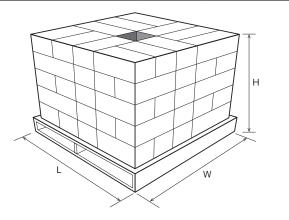
COIL TYPES

| | | | | (unite min) |
|---|------|------|-------|-------------|
| | | Coil | type | |
| | 25kg | 75kg | 100kg | 150kg |
| а | 80 | 105 | 105 | 105 |
| b | 380 | 704 | 732 | 788 |
| с | 300 | 610 | 610 | 610 |

Coil

(unit: mm)

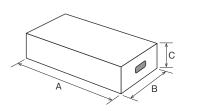
16

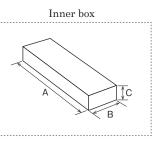

314

WELDREAM

PALLETIZED PACKAGING - Covered Electrodes

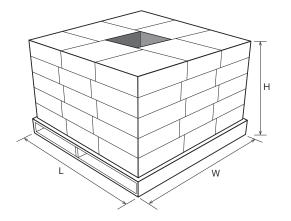
Standard Catron Box


| Electrode length (mm) | 300 | 350 | 400 | 450 |
|-------------------------------|---------------|---------------|---------------|---------------|
| Weight / Box (kg) | 20 | | | |
| Box quantity / Pallet (piece) | 60 | | | |
| Stacking boxes (piece) | 6×2×5 | | | |
| Measurement (L×W×H/mm) | 1100×1100×803 | 1100×1100×653 | 1100×1100×578 | 1100×1100×543 |

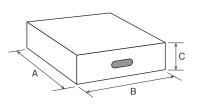


| BOX SIZE (mm) | | | | | | |
|---------------|----------|-----------|-----------|-----|-----|-----|
| Electrod | e length | 300 | | 350 | 400 | 450 |
| | А | 325 | | 380 | 430 | 480 |
| Outer box | В | 170 | | 175 | 175 | 175 |
| | С | 140 | | 110 | 95 | 88 |
| | А | (5kg) 305 | (2kg) 305 | 355 | 405 | 455 |
| Inner box | В | (5kg) 65 | (2kg) 80 | 77 | 77 | 77 |
| | С | (5kg) 70 | (2kg) 27 | 50 | 47 | 40 |

Out



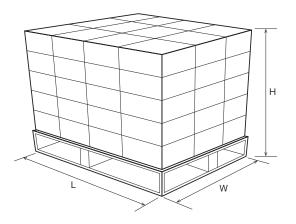
Polyethylene Inner Package Type


| Electrode length (mm) | 350 400 | |
|-------------------------------|---------------|--|
| Weight / Box (kg) | 20 | |
| Box quantity / Pallet (piece) | 40 | |
| Stacking boxes (piece) | 4×2×5 | |
| Measurement (L×W×H/mm) | 1100×1100×603 | |
| | | |

| | BOX SIZE (mm) | | | |
|--------------------------|---------------|-----|-----|--|
| Electrode length 350 400 | | | | |
| | А | 380 | 440 | |
| Outer box | В | 340 | 320 | |
| | С | 100 | 100 | |
| Innon noolso no | А | 357 | 407 | |
| Inner package | В | φ75 | φ80 | |

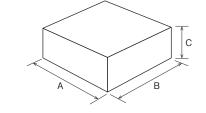
Inner package

в

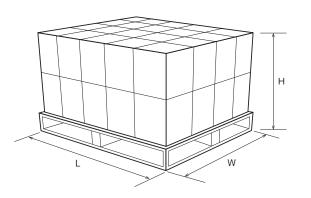

16

Packaging

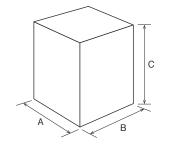
Solid / Flux Cored Wires


Standard Carton Box

| Weight / Spool (kg) | 12.5, 15, 20 |
|-------------------------------|--------------|
| Box quantity / Pallet (piece) | 60 |
| Stacking boxes (piece) | 4×3×5 |
| Measurement (L×W×H/mm) | 1100×850×706 |


| CARTON SIZE (mm) | | | | |
|---------------------|------------------|--|--|--|
| Weight / Spool (kg) | 12.5, 15.0, 20.0 | | | |
| А | 280 | | | |
| В | 280 | | | |
| С | 110 | | | |

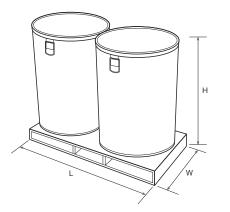
WELDREAM



■ 5kg

| = okg | |
|-------------------------------|--------------|
| Weight / Spool (kg) | 5 |
| Weight / Box (kg) | 20 |
| Box quantity / Pallet (piece) | 40 |
| Stacking boxes (piece) | 5×4×2 |
| Measurement (L×W×H/mm) | 1100×850×656 |

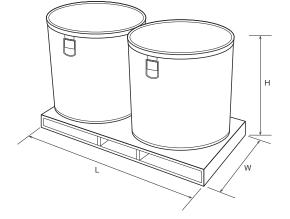
| CARTON SIZE (mm) | |
|---------------------|-----|
| Weight / Spool (kg) | 5 |
| А | 210 |
| В | 210 |
| С | 250 |



319

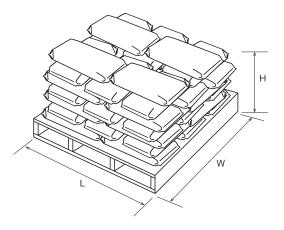
Packaging

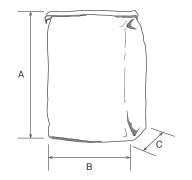
DRUM (PAIL PACK)


| Drum type | 100type | 200type |
|------------------------|--------------|--------------|
| Drum quantity / Pallet | 2 | 2 |
| Stacking drums | 1×2×1 | 1×2×1 |
| Measurement (L×W×H/mm) | 1060×530×623 | 1060×530×938 |

| Drum type | 300type |
|------------------------|--------------|
| Drum quantity / Pallet | 2 |
| Stacking drums | 1×2×1 |
| Measurement (L×W×H/mm) | 1360×700×888 |

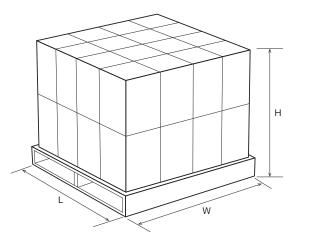
16


320

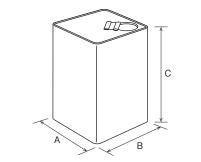

Submerged Arc Welding Materials -Flux

Paper Bag

| Weight / Bag (kg) | 15.0, 20.0, 25.0 |
|-------------------------------|------------------|
| Bag quantity / Pallet (piece) | 40 |
| Stacking Bags (piece) | 2×3×6+4 |
| Measurement (L×W×H/mm) | 1100×1100×900 |
| | |

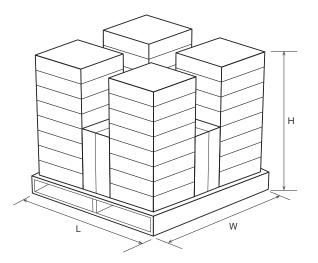


| BAG SIZE (mm) | | |
|-------------------|------------------|--|
| Weight / Bag (kg) | 15.0, 20.0, 25.0 | |
| А | 615 | |
| В | 360 | |
| С | 110 | |

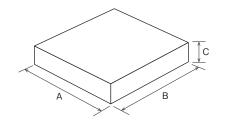


Tin Can

| Weight / Can (kg) | 15.0, 20.0 |
|-------------------------------|---------------|
| Can quantity / Pallet (piece) | 32 |
| Stacking cans (piece) | 4×4×2 |
| Measurement (L×W×H/mm) | 1100×1100×830 |

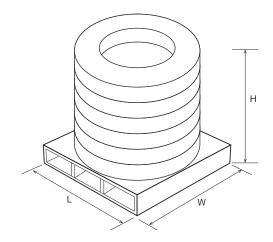


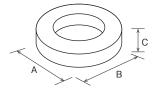
| CAN SIZE (mm) | | |
|-------------------|------------|--|
| Weight / Can (kg) | 15.0, 20.0 | |
| А | 350 | |
| В | 240 | |
| С | 240 | |



-Wire

| Weight / Coil (kg) | 25 |
|-------------------------------|---------------|
| Box quantity / Pallet (piece) | 40 |
| Stacking boxes (piece) | 2×2×8+8 |
| Measurement (L×W×H/mm) | 1100×1100×930 |


| CARTON SIZE (mm) | | |
|--------------------|-----|--|
| Weight / Coil (kg) | 25 | |
| А | 420 | |
| В | 420 | |
| С | 100 | |


16

Packaging

| Weight / Coil (kg) | 75, 100, 150 |
|--------------------------------|--------------|
| Coil quantity / Pallet (piece) | 5 |
| Stacking coils (piece) | 1×1×5 |
| Measurement (L×W×H/mm) | 850×850×650 |

| CO | COIL SIZE (mm) | | | | | | | |
|--------------------|----------------|-----|-----|--|--|--|--|--|
| Weight / Coil (kg) | 75 | 100 | 150 | | | | | |
| А | 704 | 732 | 788 | | | | | |
| В | 704 | 732 | 788 | | | | | |
| С | 105 | 105 | 105 | | | | | |

Approval List of Welding Materials

November 2023

1. Covered Arc Welding Materials -SMAW- (1)

| | | N | NK | | | | ABS | | | |
|---------------------------------|-------------|-------------|-----------------|--------------|---|----------------------|---------|--|--|--|
| Type of
Steel | Brand Name | Grade | Welding | Max.
Dia. | Grade | Max.Dia. mm | | | | |
| | | Glade | Position | mm | Grade | All | F, H-Fi | | | |
| | NS-03Hi | KMW3 | All | 6.0 | 3 | 6.0 | - | | | |
| | S-16 | KMW53H15 | F, Vu, O | 6.0 | 3Y | 5.0 | 6.0 | | | |
| | S-16V | KMW53H15 | F, O, H
(Vd) | 6.0 | 3Ү | 5.0 | 6.0 | | | |
| For Mild
Steel | EX-4 | KMW2 | F-Fil,
H-Fil | 7.0 | 2 | _ | 7.0 | | | |
| | TK-R | KMW53H10 | F, Vu, Vd | 4.0 | _ | _ | - | | | |
| | A-10 | KMW3 | All | 6.0 | 3 | 6.0 | - | | | |
| | A-14 | KMW3 | All | 7.0 | 3 | 7.0 | - | | | |
| | A-17 | KMW3 | All | 7.0 | 3 | 7.0 | - | | | |
| | L-55 | KMW53Y40H15 | F, Vu, O | 6.0 | 3Y400 | 5.0 | 6.0 | | | |
| | L-55 • PX | KMW53Y40H10 | All | 5.0 | 3Y400H10 | 5.0 | 5.0 | | | |
| | L-55•GP | KMW53Y40H10 | All | 5.0 | 3YH10 | 5.0 | 5.0 | | | |
| | NITTETSU-56 | - | _ | - | 4YH5 | 4.0 | 4.0 | | | |
| For High
Tensile
Strength | TW-50 | KMW53H15 | All | 4.0 | 3Ү | F, O
(Vd):
4.0 | _ | | | |
| Strengtn
Steel | LM-55G | KMW53H15 | All | 8.0 | 3Ү | _ | 8.0 | | | |
| | EX-50F | KMW52 | F-Fil,
H-Fil | 6.4 | 2Y | _ | 6.4 | | | |
| | L-60 | KMW3Y50H10 | F, Vu, O | 6.0 | _ | _ | - | | | |
| | L-80 | KMW4Y69 | F, Vu, O | 6.0 | $\begin{array}{c} AWSA5.5 \\ E11016 \hbox{-} G^{^{1)}} \end{array}$ | 4.0 | 6.0 | | | |

| | LR | | Γ | NV | | | BV | | | Ot | hers | |
|--------------|---------------------|--------------------|----------|---------------------|--------------------|---------------|---------------------|--------------------|-----|-------|---------------------|--------------------|
| Grade | Welding
Position | Max.
Dia.
mm | Grade | Welding
Position | Max.
Dia.
mm | Grade | Welding
Position | Max.
Dia.
mm | | Grade | Welding
Position | Max.
Dia.
mm |
| 3m | All | 6.0 | 3 | All | 6.0 | _ | - | _ | - | _ | - | - |
| 3Ym H15 | All | 6.0 | 3Y H10 | All | 6.0 | 3, 3YHH | All | 6.0 | - | _ | - | - |
| 3Ym H15 | F, O, H
(Vd) | 6.0 | 3Y H10 | F
(Vd) | 6.0 | 3, 3YHH | F, O
(Vd) | 6.0 | - | _ | _ | - |
| 2m, 2G | F, H | 7.0 | 2 | F | 7.0 | 2 | F, H | 7.0 | _ | - | - | _ |
| - | - | - | - | - | _ | _ | - | _ | - | _ | - | - |
| 3m | All | 6.0 | 3 | All | 6.0 | 3 | All | 6.0 | - | - | - | - |
| 3m | All | 7.0 | 3 | All | 7.0 | 3 | All | 7.0 | - | _ | - | - |
| 3m | All | 7.0 | 3 | All | 7.0 | 3 | All | 7.0 | - | _ | - | - |
| 3Y40m
H15 | All | 6.0 | 3Y40 H10 | All | 6.0 | 3Y,
3Y40HH | All | 6.0 | - | _ | _ | _ |
| _ | - | - | 3Y40H10 | All | 5.0 | _ | - | _ | - | _ | - | - |
| 3Ym H10 | All | 5.0 | 3Y40H10 | All | 5.0 | _ | - | _ | - | _ | - | _ |
| 4Ym H5 | All | 4.0 | 4YH5 | All | 4.0 | 4YH5 | All | 4.0 | CCS | 4YH5 | All | 4.0 |
| 3Ym H15 | All | 4.0 | 3Y H10 | All
(Vd) | 4.0 | 3, 3YHH | All | 4.0 | _ | _ | _ | _ |
| 3Ym H15 | All | 8.0 | | | | | | | | | | |
| 3YG H15 | F | 8.0 | 3Y H15 | All | 8.0 | 3, 3YHH | All | 8.0 | - | - | _ | - |
| 2Ym, 2YG | F | 6.4 | 2 | F, H | 6.4 | 2Y | F, H | 6.4 | - | _ | _ | - |
| _ | - | - | _ | - | - | 3Y46HH | All | 6.0 | - | _ | - | - |
| _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ |

Note; 1) min.AV.CVN 34J at -40°C

17 326 17

1. Covered Arc Welding Materials -SMAW- (2)

| | | N | К | | | ABS | |
|--|----------------------|--|---------------------|--------------------|--------------------------------------|---------------|---------|
| Type of
Steel | Brand Name | Grade | Welding
Position | Max.
Dia.
mm | Grade | Max.Dia. mm | |
| | | | | | | All | F, H-Fi |
| | L-55SN | KMW53H15
KMWL3H10 | All | 5.0 | ${}^{3YH5}_{+Mfr's^{8)}}$ | 5.0 | - |
| | L-47E | KMW63Y47H10 | F, V | 5.0 | 3Y400H10
+Mfr's ¹⁰ | 5.0
(F, V) | - |
| For Low
Temperature | L-57SN | _ | _ | - | 5YQ420 H5 | 4.0 | 4.0 |
| Service Steel | L-60LT | KMW5Y55H5 | All | 4.0 | 5YQ550 H5 | 4.0 | _ |
| | L-80SN | KMW5Y69H5 | All | 5.0 | 5YQ690MW | 5.0 | - |
| For
Corrosion
Resisting
Steel | RS-55 | KMW53H15 | F, Vu, O | 6.0 | 3Y H10 | 5.0 | 6.0 |
| | S-308•R | KD308 | F, Vu, O | 5.0 | - | _ | _ |
| | S-309•R | KD309 | F, Vu, O | 5.0 | - | _ | - |
| | S-309L•R | KD309L | All | 4.0 | - | _ | - |
| For
Stainless
Steel | S-309ML•R | KD309MoL | All | 5.0 | - | _ | - |
| bleer | S-316L•R | KD316L | F, Vu, O | 5.0 | - | _ | - |
| | S-2120 • R | Mfr's ²⁾ | All | 4.0 | - | _ | - |
| | S-DP8 | - | _ | - | - | _ | - |
| For Special
Alloy | YAWATA WELD
B (M) | KMWL91
KMWL91
-YP420M
-TS690M | All | 5.0 | AWS A5.11
ENiCrFe-4 ³⁾ | 5.0 | _ |
| | NITTETSU WELD
196 | KMWL92
KMWL92
-YP420M
-TS690M | _ | - | AWS A5.11
ENiMo-9 ⁵⁾ | 5.0 | _ |
| | NI9 | KMWL92 | All | 4.0 | Mfr's ⁷⁾ | 4.0 | 4.0 |

| Note; 1) T.S.: 570~720N/mm2, min.Y. | S.: 460N/mm2 | EL.: 20%, AV.CV | /N 64J at −20°C | |
|-------------------------------------|--------------|-----------------|-----------------|--|
| a) E. G. 11. G. 1 (Magdar | 00) | | | |

2) For Stainless Steel (NSSC2120)

a) min.AV.CVN 34J at -196°C
 b) AWS A5.11 ENiCrFe-4 Mod.

4) AWS A5.11 ENUCT9⁴ 4 Mod. 5) min.AV.CVN 34J at −196°C 6) AWS A5.11 ENiCrMo⁻⁶ YP ≥ 375N/mm2,AV,CVN 34J at •196°C 8) Manufacture's Guaranteed min CVN: 69J @•60°C

| 1 | LR | | D | NV | | | BV | | | Ot | thers | |
|--------------|---------------------|--------------------|----------|---------------------|--------------------|-------------------------------|---------------------|--------------------|-----|--------|---------------------|--------------------|
| Grade | Welding
Position | Max.
Dia.
mm | Grade | Welding
Position | Max.
Dia.
mm | Grade | Welding
Position | Max.
Dia.
mm | | Grade | Welding
Position | Max.
Dia.
mm |
| 5Y40m
H15 | All | 5.0 | 5Y H5 | All | 5.0 | _ | - | - | - | _ | - | - |
| 3Y47mH10 | F, V | 5.0 | 3Y46H10 | F, V | 5.0 | 3Y47 | F, Vu | 5.0 | _ | _ | _ | _ |
| - | _ | _ | 5Y42 H5 | All | 4.0 | _ | - | _ | - | _ | - | - |
| _ | _ | _ | 5 Y55 H5 | All | 4.0 | 5Y50H5 | All | 5.0
Only | - | _ | _ | - |
| | | | | | | 5Y55H5 | All | 4.0 | CCS | 5Y55H5 | All | 4.0 |
| 5Y69mH5 | F, V, O | 5.0 | 5Y69 H5 | All | 5.0 | 5Y69H5 | All | 5.0 | CCS | 5Y69 | All | 5.0 |
| 3Ym H15 | All | 6.0 | 3Y H10 | All | 6.0 | _ | _ | _ | _ | _ | _ | _ |
| - | _ | - | - | - | _ | _ | _ | _ | - | _ | _ | - |
| _ | _ | _ | _ | _ | - | _ | - | - | _ | _ | - | - |
| - | _ | - | - | - | - | - | - | - | - | - | - | - |
| - | _ | _ | - | _ | - | - | - | - | - | _ | - | - |
| - | _ | _ | - | _ | - | _ | - | - | - | _ | - | - |
| - | _ | _ | - | - | - | - | - | - | - | _ | - | - |
| — | _ | _ | Duplex | All | 4.0 | - | - | - | _ | _ | - | - |
| | | | VL9Ni | | | N50H5 | All | 5.0 | _ | _ | _ | - |
| 9Nim H15 | All | 5.0 | H10 | All | 5.0 | $Mfr's^4$ | All | 5.0 | _ | _ | _ | _ |
| 011: | A 11 | 50 | VLON: UT | A 11 | 50 | N50H5 | All | 5.0 | _ | _ | _ | _ |
| 9Nim | All | 5.0 | VL9Ni H5 | All | 5.0 | $\mathrm{Mfr's}^{\mathrm{6}}$ | All | 5.0 | _ | _ | _ | _ |
| 9Nim | All | 4.0 | VL9Ni | All | 4.0 | N50 | All | 4.0 | CCS | 9Ni | All | 4.0 |

17

2. Gas Shielded Arc Welding Materials 1) Gas Metal Arc Welding Wires Wires -GMAW-

| Type of Steel | Brand Name | NK | ABS |
|---------------------------------------|-----------------------------------|--|--|
| | YM-26 / CO2 | KSW53G (C)
KSW53Y40G (C) ¹⁾ | 3YSA
3Y400SA ¹⁾ |
| | YM-28 / CO2 | KSW53G (C) | 3YSA |
| | YM-28 / 85%Ar+15%CO ₂ | KAW53MG (M2) | 3YA |
| For Mild Steel
and
High Tensile | YM-28S / 80%Ar+20%CO2 | KSW53G (M2) | 3YSA |
| Strength Steel | YM-25 / 80%Ar+20%CO2 | KAW53MG (M2) | ЗYA |
| | YM-25S / 80%Ar+20%CO ₂ | KSW53G (M1, M2) | 3YSA |
| | YM-55C / CO ₂ | KAW53Y40MG (C) | 3Y400A |
| | YM-60C / CO ₂ | KSW3Y46G (C) | - |
| | YM-55H / CO2 | KSW53Y40G (C)
KSWL3G (C)
KSW63Y47G (C) ¹⁾ | 3Y400SA
3YSA
Mfr's ²⁰ |
| For Low
Temperature | YM-47E / CO ₂ | KSW63Y47G (C) H5 | 3Y400SAH5
Mfr's [®] |
| Service Steel | YM-60A / 80%Ar+20%CO2 | KSW4Y46G (M2) | $\mathrm{Mfr's}^{4)}$ |
| | YM-80A / 80%Ar+20%CO ₂ | KSW4Y69G(M2) ²⁰ | 4YQ690SA |
| | YM-69F / 90%Ar+10%CO ₂ | - | 5YQ690SA |

| LR | DNV | BV | | Others |
|-----------|---|---------|-----|--------|
| 3YS H15 | $\begin{array}{c} \text{III YMS} \\ \text{III Y40MS}^{\scriptscriptstyle 1)} \end{array}$ | SA3YM | _ | _ |
| 3YS H15 | III YMS | SA3YM | _ | - |
| 3YM | III YMS | A3, 3YM | - | _ |
| 3YS H15 | III YM | SA3YM | _ | _ |
| 3YM H15 | III YM | _ | - | _ |
| 3YS H5 | III YMS | _ | _ | _ |
| 3Y40M H15 | _ | _ | _ | _ |
| _ | III Y50MS | _ | - | _ |
| 4Y40S H15 | IV Y40MS | _ | _ | _ |
| 3Y47S H5 | V Y46MS H5 | _ | _ | _ |
| _ | IV Y46MS | - | _ | - |
| | IV Y69MS | - | ccs | 4Y69S |
| | V Y69MS | SA5Y69M | _ | _ |

Note; 1) Flat position only 2) min.AV.CVN 47J at -40°C 3) T.S.: 570-7200Nmm², min.Y.S.: 460N/mm², EL: 20%, AV.CVN 64J at -20°C 4) min.Y.S.: 490N/mm², T.S.: 590N/mm², EL: 20%, AV.CVN 47J at -40°C

2) Flux Cored Arc Welding Wires -FCAW- (1)

| Type of Steel | Brand Name | NK | ABS | |
|--------------------------------|------------------------------|-----------------------------------|--------------------------|--|
| | SF-1 / CO2 | KSW52G (C) H5
KSW52Y40G (C) H5 | 2YSA,
2Y400SA H5 | |
| | SF-1 • EX / CO2 | KSW52G (C) H5 | 2YSA H5 | |
| | SF-1V / CO ₂ | KSW52G (C) | - | |
| | SF-1A / 80%Ar+20%CO: | KSW53G (M2),
KSW53Y40G (M2) | 3YSA H5 | |
| | SF-1E / COz | _ | 3Y400SA H5 | |
| | SF-3 / CO2 | KSW53G (C) H5 | 3YSA H5, 3Y400SA H5 | |
| For Mild Steel
and | SF-3Y / CO2 | KSW53Y40G (C) H5 | 3Y400SA H5 | |
| High Tensile
Strength Steel | SX-3 / CO ₂ | KSW53Y40G (C) H5 | 3YSA H5,
3Y400SA H5 | |
| | SF-60 / CO ₂ | KSW3Y46G (C) H5 | _ | |
| | SM-1 / CO2 | KSW52G (C) H5 | 2YSA H10 | |
| | SM-1F / CO ₂ | KSW52Y40G (C) H5 | 2YSA H5,
2Y400SA H5 | |
| | SM-1F (×2) / CO ₂ | KAW52Y40G (C) | 2YA, 2Y400A | |
| | SM-1S / CO2 | KSW52G (C) H5
KAW52Y40G (C) H5 | 2YSA H5, 2Y400A H5 | |
| | AS-1 / CO ₂ | KSW52G (C) | 2YSA H10 | |
| | FC-1 / CO ₂ | KSW52G (C) | 2YSA H10 | |
| | PL-22 / CO ₂ | KSW52Y40G (C) | 2YSA H10, 2Y400SA
H10 | |
| | FCM-1F / CO ₂ | KSW52Y40G (C) | 2YSA H10, 2Y400SA H10 | |
| | FC-60 / CO ₂ | KSW3Y46G (C)
KSW3Y50G (C) | _ | |

| LR | DNV | BV | | Others |
|---------------------------|-------------------------|-------------------------|------|-------------|
| 2YS
2YM H5 | II Y40MS H5
II YMS | SA2YMH5
SA2Y40M | - | _ |
| 2YS H5 | II YMS H5 | SA2YM H5 | - | - |
| - | II YMS | _ | - | - |
| | | | PRS | 3YS H5 |
| 3YS | III Y40MS H5 | SA3YM | RINA | 3YS H5 |
| | | | CWB | E491T-1M-H8 |
| | | | PRS | 3YS H5 |
| 0VG 11× | | CLONIC HE | CCS | 3Y40SM H5 |
| 3YS H5 | III Y40MS H5 | SA3Y40 H5 | CWB | E491T-1C-H8 |
| | | | RINA | 3Y40S H5 |
| 3YS, 3YM H5 | III YMS H5 | SA3YM H5 | - | _ |
| 3Y40S, 3Y40M H5,
3Y40A | III Y40MS H5 | _ | - | _ |
| 3Y40S H5 | III Y40MS H5
III YMS | SA3YM H5,
SA3Y40M H5 | - | _ |
| - | _ | _ | - | - |
| 2YS H10 | _ | _ | - | _ |
| 2YS H5 | II YMS H5 | SA2YM
SA2Y40M H5 | - | _ |
| 2YM | II Y | - | - | - |
| 2YS H5 | II YMS H5 | _ | - | _ |
| 2YS H15 | II YMS | _ | - | _ |
| 2YS H15 | II YMS | SA2YM H15 | - | _ |
| 2YS | II Y40MS | _ | - | _ |
| 2YS | II Y40MS | _ | - | _ |
| _ | _ | _ | _ | _ |

2) Flux Cored Arc Welding Wires -FCAW- (2)

| Type of Steel | Brand Name | NK | ABS | |
|------------------------------|-------------------------------------|---|--------------------------------|--|
| | SF-3M / CO ₂ | KSW54Y40G (C) H5 | 4Y400SA H5 | |
| | SF-3E / CO2 | KSW4Y42G (C) H5
KAW4Y42MG (C) H5 | 4YQ420SA H5 | |
| | SF-3A / 80%Ar+20%COz | KAW54MG (M2)
KSW54Y40G (M2) | 3YSA H5 | |
| | SF-3AM / 80%Ar+20%CO ₂ | _ | 5YQ460SA H5 | |
| | SF-3AMSR / 80%Ar+20%CO ₂ | _ | _ | |
| | SF-36E / CO ₂ | KSWL3G (C) H5
KSWL3G (C) H5-
TS540M | 3YSA+Mfr's H5 ¹⁾ | |
| | SF-36F / CO ₂ | KSWL3G (C) H5 | 3YSA+Mfr's H5 ¹⁾ | |
| For Low | SF-36EA / 80%Ar+20%CO ₂ | - | - | |
| Temperature
Service Steel | SF-47E / CO ₂ | KSW63Y47G (C) H5
KAW63Y47MG (C) H5 | 5Y400SA+Mfr's H5 ²⁰ | |
| | SF-60L / CO ₂ | KSW4Y50G (C) H5 | _ | |
| | SF-50E / CO2 | KSW5Y50G (C) | 5YQ500SA H5 | |
| | SF-50A / 80%Ar+20%CO2 | - | 4YQ500SA | |
| | SM-3A / 80%Ar+20%CO2 | KSW54Y40G(C) | 4Y400SA H5 | |
| | SM-47A / 80%Ar+20%CO2 | _ | 5YQ460SA H5 | |
| | SF-80A / 80%Ar+20%CO2 | KSW4Y69G(M2) H5 | 4Y690SA | |
| | SM-80A / 80%Ar+20%CO ₂ | - | 4YQ690SA | |
| | SF-1 · GP / CO ₂ | KSW52Y40G (C) H5 | 2YSA H5, 2Y400SA H5 | |
| | SM-1F•GP (×2) / CO ₂ | KAW52Y40G (C) | 2YA, 2Y400A H5 | |
| For Corrosion | SM-1F•GP/CO ₂ | KSW52Y40G (C) H5 | 2YSA H5, 2Y400SA H5 | |
| Resisting Steel | SM-1S+GP / CO ₂ | KSW52Y40G (C) H5
KAW52Y40MG (C) H5 | 2YSA/2Y400SA H5 | |
| | SF-55RS / CO ₂ | KSW52G (C) | 2YSA H5 | |

| LR | DNV | BV | | Others | |
|---------------------|------------------------|-----------------------|------|-----------------------|--|
| 4Y40S H5 | IV Y40MS H5 | - | CWB | E491T-9C-JH4 | |
| 4Y42S H5 | IV Y42MS H5 | 4Y42 H5,
SA4Y42 H5 | CWB | E551T1-GC-H4 | |
| | | | CWB | E491T-9M-JH4 | |
| 4Y40S H5 | IV Y42MS H5 | SA4Y42 H5 | PRS | 4Y42S H5 | |
| | | | _ | _ | |
| 53400 HF | V Y46MS, | _ | PRS | 5Y46S H5 | |
| 5Y46S H5 | (VL4-4L)(H5) | _ | CWB | E551T1-Ni1M-H4 | |
| 4Y42S, 4Y42srS H5 | IV Y42MS H5 | - | - | — | |
| 5Y40S H5 | V YMS H5 | SA5YM H5 | - | _ | |
| 5Y40S H5 | V YMS H5 | _ | - | _ | |
| 5Y40S H5 | V YMS
(VL4-4L) (H5) | _ | - | — | |
| 3Y47S H5 | V Y46MS H5 | _ | - | - | |
| - | _ | - | CWB | E551T1-Ni1C-JH4 | |
| - | V Y50MS H5 | SA5Y50 | - | — | |
| 4Y50S H5 | $\rm IVY50MSH5$ | _ | - | — | |
| | | | CWB | A5.18M
E49C-GM H4 | |
| 4YS H5 | IV Y40MS H5 | SA4Y H5 | PRS | 4Y40S | |
| | | | RINA | 4Y40MS | |
| | | | CWB | A5.28M
E55C-Ni1 H4 | |
| 5Y46S | V Y46MS H5 | _ | PRS | 5Y46S | |
| | | | RINA | 5Y46MS | |
| 4Y69S H5 | IV Y69MS H5 | SA4Y69 H5 | CCS | 4Y69SM | |
| - | IV Y69MS H5 | _ | - | _ | |
| 2YS H5 | II YMS H5 | _ | - | _ | |
| 2YM | II Y | - | - | | |
| 2YS H5 | II YMS H5 | _ | _ | - | |
| 2YS H5 | _ | | - | - | |
| Mfr's ³⁾ | II YMS H5 | _ | CCS | 2YS H5 | |

Note; 1) min.AV.CVN 34J at -60°C 2) T.S.: 570~720N/mm², min.Y.S.: 460N/mm², EL.: 22% 3) T.S.: 490~660N/mm², min.Y.S.: 375N/mm², EL.: 22%, AV.CVN 47J at 0°C

17

2) Stainless Flux Cored Arc Welding Wires-FCAW-(3)

| Type of Steel | Brand Name | NK | ABS |
|----------------------|---|---------------------------|--------------------------|
| | SF-308L / CO2 | KW308LG (C) | Mfr's ¹⁾ |
| | SF-308LK / CO2 | - | $M fr's^{2}$ |
| | FC-308LK / CO2 | KW308LG(C)+Mfr's | _ |
| | SF-309L / CO2 | KW309LG (C) | $M fr's^{3}$ |
| | SF-309MoL / CO2 | KW309MoLG (C)-315M | $M fr's^{4}$ |
| For Stainless | SF-316L / CO2 | KW316LG (C) | Mfr's ⁵ |
| Steel | SF-2120 / CO ₂ | Mfr's ⁶⁾ | _ |
| | SF-DP8 / CO ₂ | KW2209G (C) | - |
| | SF-N309L
(FCAW and Self Shielding, not GMAW) | KW309LN | $\mathrm{Mfr's}^{^{2)}}$ |
| | FC-2120 / CO ₂ | Mfr's | — |
| | FC-DP8 / CO ₂ | KW2209G(C) | _ |
| For Special
Alloy | FC-9NI / CO2 | KSWL92G-YP430M-
TS690M | Mfr's |

Note; 1) min.Y.S.: 245N/mm², T.S.: 510N/mm², EL.: 35%, AV.CVN 34J at -20°C 2) min.Y.S.: 245N/mm², T.S.: 510N/mm², EL.: 35%, AV.CVN 31J at -196°C LE:0.38mm 3) min.Y.S.: 245N/mm², T.S.: 510N/mm², EL.: 30%, AV.CVN 34J at -20°C 4) min.Y.S.: 205N/mm², T.S.: 510N/mm², EL.: 20%, AV.CVN 27J at -20°C

3) Gas Tungsten Arc Welding Rods and Wires -GTAW-

| Type of Steel | Brand Name | NK | ABS |
|---|--------------------------|----------------------------|------------------------|
| For Mild Steel
and
High Tensile
Strength Steel | | KSWL3G (I) | 4Y+Mfr's ¹⁾ |
| For Corrosion
Resisting Steel | YT-55RS / Ar | KSW52G (I) | 2Y |
| | YT-308L / Ar | KY308L (I) | — |
| For Stainless | YT-309MoL/Ar | KY309Mo (I) | — |
| Steel | YT-316L / Ar | KY316L (I) | _ |
| | YT-DP8/Ar | KY2209 (I) | _ |
| For Special
Alloy | NITTETSU FILLER 196 / Ar | KSWL91G(I),
KAWL91MG(I) | _ |

Note; 1) min.AV.CVN 47J at -60°C

2) T.S.: 490~660N/mm2, min.Y.S.: 375N/mm2, EL.: 22%, AV.CVN 47J at 0°C

4) Electrogas Arc Welding Materials -EGW-

| Grade | Brand Name | NK | ABS |
|--------------------------------|--|-----------------|-----------|
| | EG-1 / SB-60V / CO ₂ | KEW52 | 2YA |
| For Mild Steel
and | EG-1 / CO ₂ | KEW52 | — |
| High Tensile
Strength Steel | YM-55H / EG-3T / SB-60VT / CO ₂ | KEW53Y40 | 3Y400A |
| | EG-47T (×2) / SB-60VT / CO ₂ | KEW63Y47 | 5Y470 |
| For Low | EG-3 / SB-60V / CO ₂ | KEW53Y40, KEW53 | 4Y, 4Y400 |
| Temperature
Service Steel | EG-3 / CO ₂ | KEW53, KEW53Y40 | _ |

Note; 1) Approval may be restricted for use with steel treated with aluminium. 2) Approval may be restricted for use with steel treated with niobium.

| LR | DNV | BV | | Others |
|---------------------|-------------|-------|-----|------------|
| 304L S | VL308L | 308L | - | _ |
| _ | VL5Ni | - | - | - |
| _ | - | - | - | - |
| SS/CMn S | VL309L | 309L | - | - |
| SS/CMn S | VL309MoL | 309Mo | - | - |
| 316L S | VL316L | - | - | - |
| _ | - | - | - | - |
| - | - | 2205 | - | - |
| Mfr's ⁷⁾ | VL309L | 309L | _ | - |
| _ | _ | _ | - | _ |
| - | - | - | | |
| 9NiS+Mfr's | VL9Ni+Mfr's | _ | CCS | 9NiS+Mfr's |

5) min.Y.S.: 205N/mm², T.S.: 510N/mm², EL.: 35%, AV.CVN 27J at -20°C

6) min.Y.S.: 450N/mm², T.S.: 690N/mm², EL.: 15% for Stainless Steel (NSSC2120)

7) SS/CMn, suitable for welding stainless steel Grade(s) other than the duplex types to any of the structural grades of ship steel for chemical use only.

| LR | DNV | BV | | Others |
|----------------------|-----|----|-----|--------|
| _ | _ | _ | _ | _ |
| ${ m Mfr's}^{^{2)}}$ | - | - | ccs | 2Y |
| 304L m | - | - | - | - |
| — | - | - | - | _ |
| 316L m | - | - | - | - |
| S31803m | - | _ | - | - |
| _ | _ | _ | _ | - |

| LR | DNV | BV | | Others |
|-----------------------|--------|--------|---|--------|
| $2, 2Y^{1}$ | II Y | - | - | - |
| 2, 2Y ¹⁾ | - | - | - | _ |
| $3Y^{2}$, $3Y40^{2}$ | IV Y40 | _ | - | _ |
| $3Y47^{2}$ | - | - | - | _ |
| $4Y^{2}$, $4Y40^{2}$ | IV Y40 | AV4Y40 | - | _ |
| $4Y^{2}$, $4Y40^{2}$ | _ | _ | _ | _ |

5) One-Side Gas Shielded Arc Welding Materials

| Type of Steel | Brand Name | NK | ABS |
|------------------------------|---|-----------------|-----|
| | YM-28 / SB-41 / CO ₂ | 0 | 0 |
| | YM-28S / SB-41 / 80%Ar+20%CO ₂ | 0 | 0 |
| | YM-55A / SB-41 / 80%Ar+20%CO ₂ | 0 | 0 |
| | YM-55H / YK-CM / SB-41 / CO ₂ | 0 | 0 |
| | YM-55H / YK-CM / SB-41GL / CO2 | 0 | 0 |
| | YM-55H / SF-1 / YK-CM / SB-41 / CO ₂ | KAW52Y40SPG (C) | 2Y |
| | SF-1 / SB-41 / CO ₂ | 0 | 0 |
| For Mild Steel | SF-1A / SB-41 / 80%Ar+20%CO ₂ | 0 | 0 |
| and
High Tensile | SF-3 / SB-41 / CO ₂ | 0 | 0 |
| Strength Steel | SF-3Y / SB-41 / CO ₂ | 0 | 0 |
| | SF-47E / SB-41 / CO ₂ | 0 | 0 |
| | SX-3 / SB-41 / CO ₂ | - | - |
| | YM-55C / SB-41 / CO ₂ | _ | - |
| | SF-1+GP / SB-41 / CO ₂ | - | - |
| | SM-1S / SB-41 / CO ₂ | 0 | 0 |
| | FC-1 / SB-41NAS / CO2 | 0 | 0 |
| | FC-1 / SB-41PNS / CO ₂ | 0 | 0 |
| For Low | YM-55H / SB-41 / CO ₂ | 0 | 0 |
| Temperature
Service Steel | SF-36E / SB-41 / CO ₂ | 0 | 0 |

| LR | DNV | BV | | Others |
|-----------------|--------------------|----------------|---|--------|
| 2YS H15 | - | - | _ | _ |
| 2YS H15 | _ | _ | - | _ |
| _ | _ | _ | - | _ |
| - | - | - | _ | _ |
| _ | _ | _ | - | _ |
| 2YA | II Y | 2Y | - | _ |
| 2YS | II YMS | SA2YM H5 | - | _ |
| _ | _ | - | - | _ |
| 3YS | III YMS H5 | _ | - | _ |
| 3Y40S H15 | III Y40MS H5 | _ | - | _ |
| 3Y47S, 3Y47M H5 | V Y46MS H5 | _ | - | _ |
| 3Y40S | III YMS, III Y40MS | SA3YM, SA3Y40M | - | _ |
| 3Y40M | _ | - | - | _ |
| _ | II YMS H5 | _ | - | _ |
| 2YS | II YMS H5 | _ | - | _ |
| 2YS | II YMS | _ | - | _ |
| _ | _ | _ | - | _ |
| 4Y40S H15 | IV YSM | - | - | _ |
| 5Y40S H5 | V YMS | _ | - | _ |

Note; o: It is available for One-side welding when it is done welding procedure qualification test (WPQT).

| . , | 0 | • | | | | |
|--------------------------------|--|---|--------------------------------|---|-----------------|------------------------------------|
| Type of Steel | Brand Name | NK | ABS | | LR | DNV |
| | Y-CM / YF-15 | KAW53TM | 3YTM | | 3YTM | III YTM |
| | Y-CMS / NF-100 | KAW53TM | _ | - | 3YTM | _ |
| | Y-D / YF-15 | KAW52T, 53M | 2YT, 3YM | - | 2YTM | II YT, III YM |
| | Y-D / YF-15A | KAW52TM | - | - | - | _ |
| | Y-D / NF-1 | KAW53TM | 3YTM | - | 3YTM | _ |
| | Y-D / NF-310 | KAW53TM | 3YTM | - | 3YTM | III YTM |
| | Y-D / NB-55E | KAW53TM | 5Y400TM(H5) | - | 3YTM | V Y40TM(H5) |
| For Mild Steel
and | Y-D (×2) / NB-55E | KAW53TM | 3YTM | - | 3YTM | III YTM |
| High Tensile
Strength Steel | Y-D (×2) / NSH-52M | KAW52TM | - | - | - | _ |
| | Y-DL(X2)/NSH-55ER | KAW53Y40T | 3Y400T | - | 3Y40T | _ |
| | Y-DS / NF-60 | KAW1M | - | - | - | _ |
| | Y-DS / NF-100 | KAW52T, KAW53M | 2YTM | - | 2YT 3YM | _ |
| | Y-E / NF-1 | KAW53M | - | - | - | _ |
| | Y-DM / YF-15 | KAW3Y46TM | _ | - | _ | _ |
| | Y-DM / YF-15B | KAW3Y50M | _ | - | _ | _ |
| | Y-80M / YF-15B | JIS Z3183 S804-H4 | - | - | - | _ |
| | Y-DM3 (×2) / NB-55E | KAW54Y40TM | - | | - | IV Y40TM |
| | Y-DM3 / NF-310 | KAWL3TM-TS540M | - | - | - | _ |
| | Y-E / NF-310 | KAWL3TM-TS540M | 3YTM, 3YTM+Mfr's ¹⁾ | - | 4YT, 5Y40TM H15 | V YTM (VL4-4L) |
| | Y-D / NB-55L | KAWL3M | 3YM+Mfr's ² | - | 4Y40M H15 | V YM (VL4-4L) |
| | Y-DS / NB-55 | KAWL3M | 3Y400M+Mfr's ³⁾ | - | 5Y40M H10 | V YM (VL4-4L) |
| For Low | Y-CMS / NB-55 | KAW5Y46M | 5Y400M+Mfr's ⁴⁾ | - | 5Y46M H10 | V Y46M |
| Temperature
Service Steel | Y-DM3 / NB-60L | KAW63Y47M H10 | 3Y400M+Mfr's ⁵⁾ H10 | - | 3Y47M H10 | V Y46M(H5) |
| | Y-DM3L (×2) / NSH-55ER | KAW63Y47T H10 | 5Y470T | - | 3Y47T | _ |
| | Y-204B / NB-250H | - | 5YQ500M H5 | - | - | V Y50M H5 |
| | Y-80M / NB-250H | KAW4Y69M,
KAW4Y69H-VE47M-
60T | 5YQ690M | - | _ | V Y69M |
| | Y-80J / NB-250J | KAW4Y69M H5 | 3.2~4.0q:5YQ690M H5 | - | 5Y69M H5 | V Y69M H5 |
| For Stainless
Steel | Y-DP8 / BF-30 | KD2209
TS Equiv | - | | _ | $\mathrm{Mfr's}^{7}$ |
| Steel | Y-308L/BF-300M | KU308LM | - | | - | _ |
| For Special
Alloy | NITTETSU FILLER 196 /
NITTETSU FLUX 10H | KAWL91M
KAWL91M-YP400M-
TS690M
KAWL92M | ${ m Mfr's}^{s_0}$ | | 9Ni M | NV1.5Ni to NV9N
(CVN at -196°C) |
| | Y-276/BF-276 | KAWL92M | Mfr's | - | 9NiM | Mfr's |

| — | - | | | |
|-----------------|-------------------------------------|---|-----|---|
| 2YT 3YM | - | _ | - | |
| _ | _ | _ | - | |
| _ | _ | _ | _ | |
| _ | _ | _ | - | |
| _ | - | _ | _ | |
| _ | IV Y40TM | _ | - | |
| _ | - | _ | _ | |
| 4YT, 5Y40TM H15 | V YTM (VL4-4L) | A5YTM | - | |
| 4Y40M H15 | V YM (VL4-4L) | _ | - | |
| 5Y40M H10 | V YM (VL4-4L) | A5Y40M | - | |
| 5Y46M H10 | V Y46M | _ | - | |
| 3Y47M H10 | V Y46M(H5) | _ | - | |
| 3Y47T | - | _ | - | |
| _ | V Y50M H5 | A5Y50M H5 | - | |
| _ | V Y69M | A5Y69M | - | |
| 5Y69M H5 | V Y69M H5 | A4Y69M H5 | CCS | 4 |
| _ | Mfr's ⁷⁾ | A2205M | - | |
| - | - | _ | - | |
| 9Ni M | NV1.5Ni to NV9Ni
(CVN at -196°C) | ${ m Mfr's}^{\scriptscriptstyle 9}{ m AN50}~{ m M}$ | - | |
| 9NiM | Mfr's | N90 Mod. | CCS | |

Others

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

 $4Y69M+Mfr's^{6}H5$

_

9NiM

_

_

_

_

_

_

_

_ _

_

_

BV

A2YTM

_

A2YTM

_

_

_

_

_

_

17 340

3) min.AV.CVN 41J at -60°C

570~690N/mm², min.Y.S.: 460N/mm², EL: 22%
 T.S.: 570~720N/mm², min.Y.S.: 460N/mm², EL: 20%, AV.CVN 64J at-20°C

2) One-Side Submerge Arc Welding Materials

| _, | obbilierge Are welding Materie | | | _ | | | | | |
|---------------------------------------|--|------------|-------|---|------------|---------|--------|-----|----------|
| Type of Steel | Brand Name | NK | ABS | | LR | DNV | BV | | Others |
| | Y-D / NB-55E /
YK-D / SB-51 | KAW52SP | 2Y | - | _ | _ | A2YU | - | _ |
| | Y-DL / NSH-50M /
YK-D / SB-51 | KAW52MP | _ | - | _ | _ | _ | - | _ |
| | Y-DL (×2) / NSH-50M /
NSH-1RM | KAW52SP | _ | - | 2A, 2YA | _ | _ | - | _ |
| | Y-DL (×3) / NSH-50M /
NSH-1RM | KAW52SP | 2Y | - | 2A, 2YA | II Y | A2YU | ccs | 2, 2Y |
| | Y-DL (×4) / NSH-50M /
NSH-1RM | KAW52SP | 2Y | - | 2A, 2YA | II Y | A2YU | - | _ |
| | Y-DL (×4) / NSH-50M /
NSH-1RM / YK-D | KAW53SP | 3Y | | ЗҮА | III Y | A3YU | - | _ |
| For Mild Steel
and
High Tensile | Y-DL (×2) / NSH-55ER /
NSH-1RM | KAW53SP | 3Y | | ЗҮА | III Y | A3YU | - | _ |
| Strength Stee | Y-DL (×3) / NSH-55ER /
NSH-1RM | KAW53Y40SP | 3Y | | ЗҮА | III Y | A3YU | - | _ |
| | Y-DL (×4) / NSH-55ER /
NSH-1RM | KAW53SP | 3Y | | ЗҮА | III Y | A3YU | - | _ |
| | Y-DL (×4) / NSH-55ER /
NSH-1RM / YK-D | KAW53Y40SP | 3Y400 | | _ | III Y40 | _ | - | _ |
| | Y-DM3 / Y-DL (×2) /
NSH-55EM / NSH-1RM | KAW53Y40SP | 3Y400 | | 3YA, 3Y40A | III Y40 | A3Y40U | ccs | 3Y, 3Y40 |
| | Y-DM3 / Y-DL (×3) /
NSH-55EM / NSH-1RM | KAW53Y40SP | 3Y400 | | _ | _ | _ | - | _ |
| | Y-DM3 / Y-DL (×2) /
NSH-55EM / NSH-1RM /
YK-CM | KAW53Y40SP | _ | - | _ | _ | _ | - | _ |

Memo

NIPPON STEEL WELDING & ENGINEERING CO., LTD.

https://www.weld.nipponsteel.com

| Head Office | Shingu Bldg., 2:4-2 Toyo, Koto-ku, Tokyo, JAPAN 135-0016
[Tel] +81-3-6388-9000 [Fax] +81-3-6388-9160
[E-mail] overseas@weld.nipponsteel.com |
|------------------------------------|--|
| Narashino Plant | 7-6-1, Higashinarashino, Narashino-City, Chiba, JAPAN 275-0001
[Tel] +81-47-479-1171 [Fax] +81-47-475-6430 |
| Hikari Plant | 4-2-1 Asae, Hikari-City, Yamaguchi, JAPAN 743-0021
[Tel] +81-833-71-3390 [Fax] +81-833-71-3394 |
| R&D Division | Futtsu Research InstituteIn NIPPON STEEL CORPORATION R&D Center,20-1 Shintomi, Futtsu-City, Chiba, JAPAN 293-8511[Tel] +81-439-80-2622[Fax] +81-439-80-2748 |
| Narashino
Operating
Division | 7-6-1, Higashinarashino, Narashino-City, Chiba, JAPAN 275-0001
Machinery & Engineering Unit
[Tel] +81-47-479-4111 [Fax] +81-47-479-1434 |
| | Plasma Welding Machinery Unit [Tel] +81-47-479-4138 [Fax] +81-47-479-2968 |
| | Optical Fiber Unit
[Tel] +81-47-479-1179 [Fax] +81-47-479-4371 |
| Shanghai Rep.
Office | Room 403-39, 4th floor, KIRIN PLAZA, Lane 666, Gubei Road,
Changning District, Shanghai, 200336, CHINA
[Tel] +86-21-6230-8925 |
| Subsidiary | |
| Thailand | NIPPON STEEL WELDING (THAILAND) Co., Ltd.
Eastern Seaboard Industrial Estate Soi 3 Zone A
300/41 T. Tasit A. Pluakdaeng Rayong 21140 THAILAND
[Tel] +66-38-656-212 [Fax] +66-38-656-233 |
| Other contact in | formation |
| Korea | Seoul
B-1601, E-Staevill 323-9 Shinjung-Dong, Yangchun-Gu, Seoul, 08093, KOREA
[Tel] +82-2-2648-6578 [Fax] +82-2-2648-6579 |
| | Pusan Room 504, Sungam B/D, 1436-2, Onchun 2-Dong, Donglae-Gu, Busan, 47734, KOREA [Tel] +82-51-553-9650 [Fax] +82-51-556-9650 |
| | I STEEL WELDING & ENGINEERING CO.,LTD.
pecial items stipulated by the Copyright Law, any unauthorized copying or |
| | ontents of this book is prohibited. |

| 1 | Mild Steel·490~550MPa High Tensile Strength Steel |
|----|---|
| 2 | 570~950MPa High Tensile Strength Steel |
| 3 | Low Temperature Service Steel |
| 4 | Heat Resisting Steel |
| 5 | Boiler Tube/Pipe |
| 6 | Atmospheric Corrosion Resisting Steel |
| 7 | Sulphuric Acid Corrosion Resisting Steel |
| 8 | Sea Water Corrosion Resisting Steel |
| g | Stainless Steel |
| 10 | Special Alloy |
| 11 | Surfacing Cast Iron |
| 12 | Electroslag Welding Materials |
| 13 | Electrogas Welding Materials |
| 14 | High Efficiency Welding Process |
| 15 | Welding Machine and Equipment |
| 16 | Packaging |
| 17 | Approval List of Welding Materials |
| | |